Dado un documento HTML con un modal, la tarea es evitar que el elemento del cuerpo se desplace siempre que el modal esté en un estado abierto. Esta tarea se puede realizar fácilmente usando JavaScript.
Enfoque: una solución simple a este problema es establecer el valor de la propiedad » desbordamiento » del elemento del cuerpo en » oculto » cada vez que se abre el modal, lo que deshabilita el desplazamiento en el elemento seleccionado. Una vez que se cierra el modal, estableceríamos la propiedad » desbordamiento » del elemento del cuerpo en » automático » para que la funcionalidad de desplazamiento esté habilitada en el elemento del cuerpo. Para saber si el modal está abierto o no, verificaríamos si tiene la clase CSS » oculta » en su lista de clases usando el método classList.contains() de JavaScript. Este “ escondidoLa clase ” es responsable de abrir y cerrar (cambiar la propiedad de visualización) del modal al hacer clic en un botón. Consulte el ejemplo dado para una mejor comprensión.
Ejemplo:
HTML
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8" /> <meta name="viewport" content= "width=device-width, initial-scale=1.0" /> <style> body { padding: 5% 20%; } #container { z-index: 1; } #btn { border: none; font-size: 24px; padding: 12px 36px; color: white; background-color: green; } #modal { height: 200px; width: 400px; padding: 60px; position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); z-index: 999; background-color: green; color: white; } .hidden { display: none; } </style> </head> <body> <!--Button to toggle modal--> <button id="btn" onclick="showModal()"> Toggle modal </button> <!--Modal container--> <div id="modal" class="hidden"> <div id="modal-body"> <h1>GeeksforGeeks</h1> <h2>This is a modal</h2> </div> </div> <!--Long text so that the body scrolls--> <div id="container"> <h1> Given a graph and a source vertex in the graph, find shortest paths from source to all vertices in the given graph. Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. Like Prim’s MST, we generate a SPT (shortest path tree) with given source as root. We maintain two sets, one set contains vertices included in shortest path tree, other set includes vertices not yet included in shortest path tree. At every step of the algorithm, we find a vertex which is in the other set (set of not yet included) and has a minimum distance from the source. Below are the detailed steps used in Dijkstra’s algorithm to find the shortest path from a single source vertex to all other vertices in the given graph. Algorithm Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree, i.e., whose minimum distance from source is calculated and finalized. Initially, this set is empty. Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE. Assign distance value as 0 for the source vertex so that it is picked first. While sptSet doesn’t include all vertices Pick a vertex u which is not there in sptSet and has minimum distance value. Include u to sptSet. Update distance value of all adjacent vertices of u. To update the distance values, iterate through all adjacent vertices. For every adjacent vertex v, if sum of distance value of u (from source) and weight of edge u-v, is less than the distance value of v, then update the distance value of v. Given a graph and a source vertex in the graph, find shortest paths from source to all vertices in the given graph. Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. Like Prim’s MST, we generate a SPT (shortest path tree) with given source as root. We maintain two sets, one set contains vertices included in shortest path tree, other set includes vertices not yet included in shortest path tree. At every step of the algorithm, we find a vertex which is in the other set (set of not yet included) and has a minimum distance from the source. Below are the detailed steps used in Dijkstra’s algorithm to find the shortest path from a single source vertex to all other vertices in the given graph. Algorithm Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree, i.e., whose minimum distance from source is calculated and finalized. Initially, this set is empty. Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE. Assign distance value as 0 for the source vertex so that it is picked first. While sptSet doesn’t include all vertices Pick a vertex u which is not there in sptSet and has minimum distance value. Include u to sptSet. Update distance value of all adjacent vertices of u. To update the distance values, iterate through all adjacent vertices. For every adjacent vertex v, if sum of distance value of u (from source) and weight of edge u-v, is less than the distance value of v, then update the distance value of v. </h1> </div> <script> // Select required elements from the DOM const modal = document.querySelector("#modal"); const body = document.querySelector("body"); const showModal = function (e) { modal.classList.toggle("hidden"); if (!modal.classList.contains("hidden")) { // Disable scroll body.style.overflow = "hidden"; } else { // Enable scroll body.style.overflow = "auto"; } }; </script> </body> </html>
Producción: