Cómo seleccionar varias columnas en un marco de datos de pandas

Python es un excelente lenguaje para realizar análisis de datos, principalmente debido al fantástico ecosistema de paquetes de Python centrados en datos. Pandas es uno de esos paquetes y facilita mucho la importación y el análisis de datos.

Analicemos todas las formas diferentes de seleccionar varias columnas en un DataFrame de pandas .

Método #1: Método básico

Dado un diccionario que contiene la entidad Empleado como claves y una lista de esas entidades como valores.

# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
  
# select two columns
df[['Name', 'Qualification']]

Producción:

Seleccione Segunda a cuarta columna.

# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
  
# select all rows 
# and second to fourth column
df[df.columns[1:4]]

Producción:

Método #2: Usarloc[]

Ejemplo 1: Seleccione dos columnas

# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
  
# select three rows and two columns
df.loc[1:3, ['Name', 'Qualification']]

Producción:

Ejemplo 2: Seleccionar una a otra columna. En nuestro caso, seleccionamos el nombre de la columna «Nombre» a «Dirección».

# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
  
# select two rows and 
# column "name" to "Address"
# Means total three columns
df.loc[0:1, 'Name':'Address']

Producción:

Ejemplo 3: Primero filtrar filas y seleccionar columnas por formato de etiqueta y luego Seleccionar todas las columnas.

# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']
       }
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
  
# .loc DataFrame method
# filtering rows and selecting columns by label
# format
# df.loc[rows, columns]
# row 1, all columns
df.loc[0, :]

Producción:

Método #3: Usariloc[]

Ejemplo 1: seleccione las dos primeras columnas.

# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
  
# Remember that Python does not
# slice inclusive of the ending index.
# select all rows 
# select first two column
df.iloc[:, 0:2] 

Producción:

Ejemplo 2: Seleccionar todas o algunas columnas, una a otra usando .iloc.

# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
  
# iloc[row slicing, column slicing]
df.iloc [0:2, 1:3]

Producción:

Método #4: Usar.ix

Seleccione todas o algunas columnas, una a otra usando .ix.

# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
  
# select all rows and 0 to 2 columns 
print(df.ix[:, 0:2])

Producción:

Publicación traducida automáticamente

Artículo escrito por Rajput-Ji y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *