Rellenar sucesor en orden para todos los Nodes

Dado un árbol binario donde cada Node tiene la siguiente estructura, escriba una función para completar el siguiente puntero para todos los Nodes. El próximo puntero para cada Node debe configurarse para que apunte al sucesor en orden.

C++

class node {
public:
    int data;
    node* left;
    node* right;
    node* next;
};
 
// This code is contributed
// by Shubham Singh

C

struct node {
    int data;
    struct node* left;
    struct node* right;
    struct node* next;
}

Java

// A binary tree node
class Node {
    int data;
    Node left, right, next;
 
    Node(int item)
    {
        data = item;
        left = right = next = null;
    }
}
 
// This code is contributed by SUBHAMSINGH10.

Python3

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
        self.next = None
 
# This code is contributed by Shubham Singh

C#

class Node {
    public int data;
    public Node left, right, next;
 
    public Node(int item)
    {
        data = item;
        left = right = next = null;
    }
}
Node root;
 
// This code is contributed
// by Shubham Singh

Javascript

<script>
class Node
{
 
    constructor(x) {
        this.data = x;
        this.left = null;
        this.right = null;
      }
}
 
// This code is contributed by Shubham Singh
</script>

Inicialmente, todos los punteros siguientes tienen valores NULL. Su función debe llenar estos punteros siguientes para que apunten a un sucesor en orden.

C++

// C++ program to populate inorder
// traversal of all nodes
#include <bits/stdc++.h>
using namespace std;
 
class node {
public:
    int data;
    node* left;
    node* right;
    node* next;
};
 
/* Set next of p and all descendants of p
by traversing them in reverse Inorder */
void populateNext(node* p)
{
    // The first visited node will be the
    // rightmost node next of the rightmost
    // node will be NULL
    static node* next = NULL;
 
    if (p) {
        // First set the next pointer
        // in right subtree
        populateNext(p->right);
 
        // Set the next as previously visited
        // node in reverse Inorder
        p->next = next;
 
        // Change the prev for subsequent node
        next = p;
 
        // Finally, set the next pointer in
        // left subtree
        populateNext(p->left);
    }
}
 
/* UTILITY FUNCTIONS */
/* Helper function that allocates a new
node with the given data and NULL left
and right pointers. */
node* newnode(int data)
{
    node* Node = new node();
    Node->data = data;
    Node->left = NULL;
    Node->right = NULL;
    Node->next = NULL;
 
    return (Node);
}
 
// Driver Code
int main()
{
 
    /* Constructed binary tree is
            10
            / \
        8 12
        /
    3
    */
    node* root = newnode(10);
    root->left = newnode(8);
    root->right = newnode(12);
    root->left->left = newnode(3);
 
    // Populates nextRight pointer in all nodes
    populateNext(root);
 
    // Let us see the populated values
    node* ptr = root->left->left;
    while (ptr) {
        // -1 is printed if there is no successor
        cout << "Next of " << ptr->data << " is "
             << (ptr->next ? ptr->next->data : -1) << endl;
        ptr = ptr->next;
    }
 
    return 0;
}
 
// This code is contributed by rathbhupendra

Java

// Java program to populate inorder traversal of all nodes
 
// A binary tree node
class Node {
    int data;
    Node left, right, next;
 
    Node(int item)
    {
        data = item;
        left = right = next = null;
    }
}
 
class BinaryTree {
    Node root;
    static Node next = null;
 
    /* Set next of p and all descendants of p by traversing
       them in reverse Inorder */
    void populateNext(Node node)
    {
        // The first visited node will be the rightmost node
        // next of the rightmost node will be NULL
        if (node != null) {
            // First set the next pointer in right subtree
            populateNext(node.right);
 
            // Set the next as previously visited node in
            // reverse Inorder
            node.next = next;
 
            // Change the prev for subsequent node
            next = node;
 
            // Finally, set the next pointer in left subtree
            populateNext(node.left);
        }
    }
 
    /* Driver program to test above functions*/
    public static void main(String args[])
    {
        /* Constructed binary tree is
            10
           /   \
          8      12
         /
        3    */
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(12);
        tree.root.left.left = new Node(3);
 
        // Populates nextRight pointer in all nodes
        tree.populateNext(tree.root);
 
        // Let us see the populated values
        Node ptr = tree.root.left.left;
        while (ptr != null) {
            // -1 is printed if there is no successor
            int print
                = ptr.next != null ? ptr.next.data : -1;
            System.out.println("Next of " + ptr.data
                               + " is: " + print);
            ptr = ptr.next;
        }
    }
}
 
// This code has been contributed by Mayank Jaiswal

Python3

# Python3 program to populate
# inorder traversal of all nodes
 
# Tree node
 
 
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
        self.next = None
 
 
# The first visited node will be
# the rightmost node next of the
# rightmost node will be None
next = None
 
# Set next of p and all descendants of p
# by traversing them in reverse Inorder
 
 
def populateNext(p):
 
    global next
 
    if (p != None):
 
        # First set the next pointer
        # in right subtree
        populateNext(p.right)
 
        # Set the next as previously visited node
        # in reverse Inorder
        p.next = next
 
        # Change the prev for subsequent node
        next = p
 
        # Finally, set the next pointer
        # in left subtree
        populateNext(p.left)
 
# UTILITY FUNCTIONS
# Helper function that allocates
# a new node with the given data
# and None left and right pointers.
 
 
def newnode(data):
 
    node = Node(0)
    node.data = data
    node.left = None
    node.right = None
    node.next = None
 
    return(node)
 
# Driver Code
 
 
# Constructed binary tree is
#         10
#     / \
#     8     12
# /
# 3
root = newnode(10)
root.left = newnode(8)
root.right = newnode(12)
root.left.left = newnode(3)
 
# Populates nextRight pointer
# in all nodes
p = populateNext(root)
 
# Let us see the populated values
ptr = root.left.left
while(ptr != None):
 
    out = 0
    if(ptr.next != None):
        out = ptr.next.data
    else:
        out = -1
 
    # -1 is printed if there is no successor
    print("Next of", ptr.data, "is", out)
    ptr = ptr.next
 
# This code is contributed by Arnab Kundu

C#

// C# program to populate inorder traversal of all nodes
using System;
 
class BinaryTree {
    // A binary tree node
    class Node {
        public int data;
        public Node left, right, next;
 
        public Node(int item)
        {
            data = item;
            left = right = next = null;
        }
    }
    Node root;
    static Node next = null;
 
    /* Set next of p and all descendants of p by traversing
       them in reverse Inorder */
    void populateNext(Node node)
    {
        // The first visited node will be the rightmost node
        // next of the rightmost node will be NULL
        if (node != null) {
            // First set the next pointer in right subtree
            populateNext(node.right);
 
            // Set the next as previously visited node in
            // reverse Inorder
            node.next = next;
 
            // Change the prev for subsequent node
            next = node;
 
            // Finally, set the next pointer in left subtree
            populateNext(node.left);
        }
    }
 
    /* Driver program to test above functions*/
    static public void Main(String[] args)
    {
        /* Constructed binary tree is
            10
           /   \
          8      12
         /
        3    */
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(12);
        tree.root.left.left = new Node(3);
 
        // Populates nextRight pointer in all nodes
        tree.populateNext(tree.root);
 
        // Let us see the populated values
        Node ptr = tree.root.left.left;
        while (ptr != null) {
            // -1 is printed if there is no successor
            int print
                = ptr.next != null ? ptr.next.data : -1;
            Console.WriteLine("Next of " + ptr.data
                              + " is: " + print);
            ptr = ptr.next;
        }
    }
}
 
// This code has been contributed by Arnab Kundu

Javascript

<script>
// Javascript program to populate inorder traversal of all nodes
   
    // A binary tree node
    class Node
    {
     
        constructor(x) {
            this.data = x;
            this.left = null;
            this.right = null;
          }
    }
     
    let root;
    let next = null;
        
    /* Set next of p and all descendants of p by traversing them in
       reverse Inorder */
    function populateNext(node)
    {
        // The first visited node will be the rightmost node
        // next of the rightmost node will be NULL
        if (node != null)
        {
            // First set the next pointer in right subtree
            populateNext(node.right);
   
            // Set the next as previously visited node in reverse Inorder
            node.next = next;
   
            // Change the prev for subsequent node
            next = node;
   
            // Finally, set the next pointer in left subtree
            populateNext(node.left);
        }
    }
     
    /* Driver program to test above functions*/
     
    /* Constructed binary tree is
            10
           /   \
          8      12
         /
        3    */
    root = new Node(10)
    root.left = new Node(8)
    root.right = new Node(12)
    root.left.left = new Node(3)
  
    // Populates nextRight pointer
    // in all nodes
    p = populateNext(root)
  
    // Let us see the populated values
    ptr = root.left.left
     
    while (ptr != null)
        {
            // -1 is printed if there is no successor
            let print = ptr.next != null ? ptr.next.data : -1;
            document.write("Next of " + ptr.data + " is: " + print+"<br>");
            ptr = ptr.next;
        }
     
    // This code is contributed by unknown2108
</script>

C++

// An implementation that doesn't use static variable
 
// A wrapper over populateNextRecur
void populateNext(node* root)
{
    // The first visited node will be the rightmost node
    // next of the rightmost node will be NULL
    node* next = NULL;
 
    populateNextRecur(root, &next);
}
 
/* Set next of all descendants of p by
traversing them in reverse Inorder */
void populateNextRecur(node* p, node** next_ref)
{
    if (p) {
        // First set the next pointer in right subtree
        populateNextRecur(p->right, next_ref);
 
        // Set the next as previously visited
        // node in reverse Inorder
        p->next = *next_ref;
 
        // Change the prev for subsequent node
        *next_ref = p;
 
        // Finally, set the next pointer in right subtree
        populateNextRecur(p->left, next_ref);
    }
}
 
// This is code is contributed by rathbhupendra

C

// An implementation that doesn't use static variable
 
// A wrapper over populateNextRecur
void populateNext(struct node* root)
{
    // The first visited node will be the rightmost node
    // next of the rightmost node will be NULL
    struct node* next = NULL;
 
    populateNextRecur(root, &next);
}
 
/* Set next of all descendants of p by traversing them in
 * reverse Inorder */
void populateNextRecur(struct node* p,
                       struct node** next_ref)
{
    if (p) {
        // First set the next pointer in right subtree
        populateNextRecur(p->right, next_ref);
 
        // Set the next as previously visited node in
        // reverse Inorder
        p->next = *next_ref;
 
        // Change the prev for subsequent node
        *next_ref = p;
 
        // Finally, set the next pointer in right subtree
        populateNextRecur(p->left, next_ref);
    }
}

Java

// A wrapper over populateNextRecur
void populateNext(Node node)
{
 
    // The first visited node will be the rightmost node
    // next of the rightmost node will be NULL
    populateNextRecur(node, next);
}
 
/* Set next of all descendants of p by traversing them in
 * reverse Inorder */
void populateNextRecur(Node p, Node next_ref)
{
    if (p != null) {
 
        // First set the next pointer in right subtree
        populateNextRecur(p.right, next_ref);
 
        // Set the next as previously visited node in
        // reverse Inorder
        p.next = next_ref;
 
        // Change the prev for subsequent node
        next_ref = p;
 
        // Finally, set the next pointer in right subtree
        populateNextRecur(p.left, next_ref);
    }
}

Python3

# A wrapper over populateNextRecur
def populateNext(node):
 
    # The first visited node will be the rightmost node
    # next of the rightmost node will be NULL
    populateNextRecur(node, next)
 
# /* Set next of all descendants of p by
# traversing them in reverse Inorder */
 
 
def populateNextRecur(p, next_ref):
 
    if (p != None):
 
        # First set the next pointer in right subtree
        populateNextRecur(p.right, next_ref)
 
        # Set the next as previously visited node in reverse Inorder
        p.next = next_ref
 
        # Change the prev for subsequent node
        next_ref = p
 
        # Finally, set the next pointer in right subtree
        populateNextRecur(p.left, next_ref)
 
# This code is contributed by Mohit kumar 29

C#

// A wrapper over populateNextRecur
void populateNext(Node node)
{
 
    // The first visited node will be the rightmost node
    // next of the rightmost node will be NULL
    populateNextRecur(node, next);
}
 
/* Set next of all descendants of p by
traversing them in reverse Inorder */
void populateNextRecur(Node p, Node next_ref)
{
    if (p != null) {
 
        // First set the next pointer in right subtree
        populateNextRecur(p.right, next_ref);
 
        // Set the next as previously visited node in
        // reverse Inorder
        p.next = next_ref;
 
        // Change the prev for subsequent node
        next_ref = p;
 
        // Finally, set the next pointer in right subtree
        populateNextRecur(p.left, next_ref);
    }
}
 
// This code is contributed by princiraj1992

Javascript

<script>
    
// A wrapper over populateNextRecur
function populateNext(node)
{
    // The first visited node will be the rightmost node
    // next of the rightmost node will be NULL
    populateNextRecur(node, next);
}
 
/* Set next of all descendants of p by
traversing them in reverse Inorder */
function populateNextRecur(p, next_ref)
{
    if (p != null)
    {
         
        // First set the next pointer in right subtree
        populateNextRecur(p.right, next_ref);
         
        // Set the next as previously visited node in reverse Inorder
        p.next = next_ref;
         
        // Change the prev for subsequent node
        next_ref = p;
         
        // Finally, set the next pointer in right subtree
        populateNextRecur(p.left, next_ref);
    }
}
 
// This code is contributed by importantly.
</script>

Java

import java.util.ArrayList;
 
// class Node
class Node {
    int data;
    Node left, right, next;
 
    // constructor for initializing key value and all the
    // pointers
    Node(int data)
    {
        this.data = data;
        left = right = next = null;
    }
}
 
public class Solution {
    Node root = null;
 
    // list to store inorder sequence
    ArrayList<Node> list = new ArrayList<>();
 
    // function for populating next pointer to inorder
    // successor
    void populateNext()
    {
 
        // list = [3,8,10,12]
 
        // inorder successor of the present node is the
        // immediate right node for ex: inorder successor of
        // 3 is 8
        for (int i = 0; i < list.size(); i++) {
            // check if it is the last node
            // point next of last node(right most) to null
            if (i != list.size() - 1) {
                list.get(i).next = list.get(i + 1);
            }
            else {
                list.get(i).next = null;
            }
        }
 
        // Let us see the populated values
        Node ptr = root.left.left;
        while (ptr != null) {
            // -1 is printed if there is no successor
            int print
                = ptr.next != null ? ptr.next.data : -1;
            System.out.println("Next of " + ptr.data
                               + " is: " + print);
            ptr = ptr.next;
        }
    }
 
    // insert the inorder into a list to keep track
    // of the inorder successor
    void inorder(Node root)
    {
        if (root != null) {
            inorder(root.left);
            list.add(root);
            inorder(root.right);
        }
    }
 
    // Driver function
    public static void main(String args[])
    {
        Solution tree = new Solution();
 
        /*         10
               /   \
              8      12
             /
            3                */
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(12);
        tree.root.left.left = new Node(3);
 
        // function calls
        tree.inorder(tree.root);
        tree.populateNext();
    }
}

Python3

# class Node
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None
        self.right = None
        self.left = None
 
 
root = None
 
# list to store inorder sequence
list = []
 
# function for populating next pointer to inorder successor
 
 
def populateNext(root):
 
    # list = [3,8,10,12]
 
    # inorder successor of the present Node is the immediate
    # right Node
    # for ex: inorder successor of 3 is 8
    for i in range(len(list)):
 
        # check if it is the last Node
        # point next of last Node(right most) to None
        if (i != len(list) - 1):
            list[i].next = list[i + 1]
        else:
            list[i].next = None
 
    # Let us see the populated values
    ptr = root.left.left
    while (ptr != None):
 
        # -1 is printed if there is no successor
        pt = -1
        if(ptr.next != None):
            pt = ptr.next.data
        print("Next of ", ptr.data, " is: ", pt)
        ptr = ptr.next
 
# insert the inorder into a list to keep track
# of the inorder successor
 
 
def inorder(root):
    if (root != None):
        inorder(root.left)
        list.append(root)
        inorder(root.right)
 
 
# Driver function
if __name__ == '__main__':
 
    '''
     * 10 / \ 8 12 / 3
     '''
    root = Node(10)
    root.left = Node(8)
    root.right = Node(12)
    root.left.left = Node(3)
 
    # function calls
    inorder(root)
    populateNext(root)
 
# This code is contributed by Rajput-Ji

C#

using System;
using System.Collections.Generic;
 
// class Node
public class Node {
    public
 
        int data;
    public
 
        Node left,
        right, next;
 
    // constructor for initializing key value and all the
    // pointers
    public
 
        Node(int data)
    {
        this.data = data;
        left = right = next = null;
    }
}
 
public class Solution {
    Node root = null;
 
    // list to store inorder sequence
    List<Node> list = new List<Node>();
 
    // function for populating next pointer to inorder
    // successor
    void populateNext()
    {
 
        // list = [3,8,10,12]
 
        // inorder successor of the present node is the
        // immediate right node for ex: inorder successor of
        // 3 is 8
        for (int i = 0; i < list.Count; i++) {
            // check if it is the last node
            // point next of last node(right most) to null
            if (i != list.Count - 1) {
                list[i].next = list[i + 1];
            }
            else {
                list[i].next = null;
            }
        }
 
        // Let us see the populated values
        Node ptr = root.left.left;
        while (ptr != null) {
            // -1 is printed if there is no successor
            int print
                = ptr.next != null ? ptr.next.data : -1;
            Console.WriteLine("Next of " + ptr.data
                              + " is: " + print);
            ptr = ptr.next;
        }
    }
 
    // insert the inorder into a list to keep track
    // of the inorder successor
    void inorder(Node root)
    {
        if (root != null) {
            inorder(root.left);
            list.Add(root);
            inorder(root.right);
        }
    }
 
    // Driver function
    public static void Main(String[] args)
    {
        Solution tree = new Solution();
 
        /*
         * 10 / \ 8 12 / 3
         */
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(12);
        tree.root.left.left = new Node(3);
 
        // function calls
        tree.inorder(tree.root);
        tree.populateNext();
    }
}
 
// This code is contributed by gauravrajput1

Javascript

<script>
 
// class Node
class Node
{
    // constructor for initializing key value and all the
    // pointers
    constructor(data)
    {
        this.data = data;
        this.left = this.right = this.next = null;
    }
}
 
let root = null;
 
// list to store inorder sequence
let list = [];
 
// function for populating next pointer to inorder successor
function populateNext()
{
    // list = [3,8,10,12]
          
        // inorder successor of the present node is the immediate
        // right node
        // for ex: inorder successor of 3 is 8
        for(let i = 0; i < list.length; i++)
        {
            // check if it is the last node
            // point next of last node(right most) to null
            if(i != list.length - 1)
            {
                list[i].next = list[i + 1];
            }
            else {
                list[i].next = null;
            }
        }
          
        // Let us see the populated values
        let ptr = root.left.left;
        while (ptr != null)
        {
         
            // -1 is printed if there is no successor
            let print = ptr.next != null ? ptr.next.data : -1;
            document.write("Next of " + ptr.data + " is: " + print+"<br>");
            ptr = ptr.next;
        }
}
 
// insert the inorder into a list to keep track
// of the inorder successor
function inorder(root)
{
    if(root != null)
    {
            inorder(root.left);
            list.push(root);
            inorder(root.right);
        }
}
 
// Driver function
 
/*         10
               /   \
              8      12
             /
            3                */
root = new Node(10);
root.left = new Node(8);
root.right = new Node(12);
root.left.left = new Node(3);
 
// function calls
inorder(root);
populateNext();
 
// This code is contributed by avanitrachhadiya2155
</script>

C++

#include <iostream>
#include <stack>
using namespace std;
 
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
    struct Node* next;
 
    Node(int x)
    {
        data = x;
        left = NULL;
        right = NULL;
        next = NULL;
    }
};
 
Node* inorder(Node* root)
{
    if (root->left == NULL)
        return root;
    inorder(root->left);
}
 
void populateNext(Node* root)
{
    stack<Node*> s;
    Node* temp = root;
    while (temp->left) {
        s.push(temp);
        temp = temp->left;
    }
    Node* curr = temp;
    if (curr->right) {
        Node* q = curr->right;
        while (q) {
            s.push(q);
            q = q->left;
        }
    }
    while (!s.empty()) {
        Node* inorder = s.top();
        s.pop();
        curr->next = inorder;
        if (inorder->right) {
            Node* q = inorder->right;
            while (q) {
                s.push(q);
                q = q->left;
            }
        }
        curr = inorder;
    }
}
 
Node* newnode(int data)
{
    Node* node = new Node(data);
    return (node);
}
 
int main()
{
    /* Constructed binary tree is
               10
               / \
              8  12
             /
            3
       */
    Node* root = newnode(10);
    root->left = newnode(8);
    root->right = newnode(12);
    root->left->left = newnode(3);
    populateNext(root);
    Node* ptr = inorder(root);
    while (ptr) {
        // -1 is printed if there is no successor
        cout << "Next of " << ptr->data << " is "
             << (ptr->next ? ptr->next->data : -1) << endl;
        ptr = ptr->next;
    }
 
    return 0;
}

Java

import java.util.*;
 
class GFG{
 
  static class Node {
    int data;
    Node left;
    Node right;
    Node next;
 
    Node(int x)
    {
      data = x;
      left = null;
      right = null;
      next = null;
    }
  };
 
  static Node inorder(Node root)
  {
    if (root.left == null)
      return root;
    root = inorder(root.left);
    return root;
  }
 
  static void populateNext(Node root)
  {
    Stack<Node> s = new Stack<>();
    Node temp = root;
    while (temp.left!=null) {
      s.add(temp);
      temp = temp.left;
    }
    Node curr = temp;
    if (curr.right!=null) {
      Node q = curr.right;
      while (q!=null) {
        s.add(q);
        q = q.left;
      }
    }
    while (!s.isEmpty()) {
      Node inorder = s.peek();
      s.pop();
      curr.next = inorder;
      if (inorder.right!=null) {
        Node q = inorder.right;
        while (q!=null) {
          s.add(q);
          q = q.left;
        }
      }
      curr = inorder;
    }
  }
 
  static Node newnode(int data)
  {
    Node node = new Node(data);
    return (node);
  }
 
  public static void main(String[] args)
  {
    /* Constructed binary tree is
               10
               / \
              8  12
             /
            3
       */
    Node root = newnode(10);
    root.left = newnode(8);
    root.right = newnode(12);
    root.left.left = newnode(3);
    populateNext(root);
    Node ptr = inorder(root);
    while (ptr != null)
    {
       
      // -1 is printed if there is no successor
      System.out.print("Next of " +  ptr.data+ " is "
                       + (ptr.next!=null ? ptr.next.data : -1) +"\n");
      ptr = ptr.next;
    }
  }
}
 
// This code is contributed by Rajput-Ji

Python3

class GFG:
    class Node:
        data = 0
        left = None
        right = None
        next = None
 
        def __init__(self, x):
            self.data = x
            self.left = None
            self.right = None
            self.next = None
 
    @staticmethod
    def inorder(root):
        if (root.left == None):
            return root
        root = GFG.inorder(root.left)
        return root
 
    @staticmethod
    def populateNext(root):
        s = []
        temp = root
        while (temp.left != None):
            s.append(temp)
            temp = temp.left
        curr = temp
        if (curr.right != None):
            q = curr.right
            while (q != None):
                s.append(q)
                q = q.left
        while (not (len(s) == 0)):
            inorder = s[-1]
            s.pop()
            curr.next = inorder
            if (inorder.right != None):
                q = inorder.right
                while (q != None):
                    s.append(q)
                    q = q.left
            curr = inorder
 
    @staticmethod
    def newnode(data):
        node = GFG.Node(data)
        return (node)
 
    @staticmethod
    def main(args):
        # Constructed binary tree is
        #               10
        #               / \
        #              8  12
        #             /
        #            3
        root = GFG.newnode(10)
        root.left = GFG.newnode(8)
        root.right = GFG.newnode(12)
        root.left.left = GFG.newnode(3)
        GFG.populateNext(root)
        ptr = GFG.inorder(root)
        while (ptr != None):
            # -1 is printed if there is no successor
            print("Next of " + str(ptr.data) + " is " +
                  str((ptr.next.data if ptr.next != None else -1)) + "\n", end="")
            ptr = ptr.next
 
 
if __name__ == "__main__":
    GFG.main([])
 
# This code is contributed by mukulsomukesh

C#

using System;
using System.Collections.Generic;
 
public class GFG {
 
    public class Node {
        public int data;
        public Node left;
        public Node right;
        public Node next;
 
        public Node(int x) {
            data = x;
            left = null;
            right = null;
            next = null;
        }
    };
 
    static Node inorder(Node root) {
        if (root.left == null)
            return root;
        root = inorder(root.left);
        return root;
    }
 
    static void populateNext(Node root) {
        Stack<Node> s = new Stack<Node>();
        Node temp = root;
        while (temp.left != null) {
            s.Push(temp);
            temp = temp.left;
        }
        Node curr = temp;
        if (curr.right != null) {
            Node q = curr.right;
            while (q != null) {
                s.Push(q);
                q = q.left;
            }
        }
        while (s.Count!=0) {
            Node inorder = s.Peek();
            s.Pop();
            curr.next = inorder;
            if (inorder.right != null) {
                Node q = inorder.right;
                while (q != null) {
                    s.Push(q);
                    q = q.left;
                }
            }
            curr = inorder;
        }
    }
 
    static Node newnode(int data) {
        Node node = new Node(data);
        return (node);
    }
 
    public static void Main(String[] args) {
        /*
         * Constructed binary tree is 10 / \ 8 12 / 3
         */
        Node root = newnode(10);
        root.left = newnode(8);
        root.right = newnode(12);
        root.left.left = newnode(3);
        populateNext(root);
        Node ptr = inorder(root);
        while (ptr != null) {
 
            // -1 is printed if there is no successor
            Console.Write("Next of " + ptr.data + " is " + (ptr.next != null ? ptr.next.data : -1) + "\n");
            ptr = ptr.next;
        }
    }
}
 
// This code contributed by Rajput-Ji

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *