Compruebe si el árbol binario dado tiene un subárbol con el mismo número de 1 y 0 – Part 1

Dado un árbol binario que tiene datos en los Nodes como 0 o 1. La tarea es averiguar si existe un subárbol que tenga el mismo número de 1 y 0.

Ejemplos: 

Entrada
 

Salida: Verdadero 
Hay dos subárboles presentes en el árbol anterior donde el número de 1 es igual al número de 0.

Entrada
 

Salida : Falso 
No existe tal subárbol presente que tenga el número de 1 igual al número de 0

 

Enfoque: La idea es cambiar los datos 0 del árbol a -1. Para que sea muy fácil encontrar el subárbol que tenga el mismo número de 0 y 1. Después de convertir todos los 0 a -1, cree un árbol de suma. Después de crear el árbol de suma, cada Node contendrá la suma de todos los Nodes que se encuentran debajo de él. 

Atraviese el árbol nuevamente y encuentre si hay un Node que tiene suma 0, significa que hay un subárbol que tiene el mismo número de 1 y -1, es decir, el mismo número de 1 y 0.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program to check if there exist a
// subtree with equal number of 1's and 0's
 
#include <bits/stdc++.h>
using namespace std;
 
// Binary Tree Node
struct node {
    int data;
    struct node *right, *left;
};
 
// Utility function to create a new node
struct node* newnode(int key)
{
    struct node* temp = new node;
    temp->data = key;
    temp->right = NULL;
    temp->left = NULL;
 
    return temp;
}
 
// Function to convert all 0's in the
// tree to -1
void convert(struct node* root)
{
    if (root == NULL) {
        return;
    }
 
    // Move to right subtree
    convert(root->right);
 
    // Replace the 0's with -1 in the tree
    if (root->data == 0) {
        root->data = -1;
    }
 
    // Move to left subtree
    convert(root->left);
}
 
// Function to convert the tree to a SUM tree
int sum_tree(struct node* root)
{
    int a = 0, b = 0;
 
    if (root == NULL) {
        return 0;
    }
 
    a = sum_tree(root->left);
    b = sum_tree(root->right);
 
    root->data = root->data + a + b;
 
    return root->data;
}
 
// Function to check if there exists a subtree
// with equal no of 1s and 0s
int checkSubtree(struct node* root, int d)
{
    if (root == NULL) {
        return 0;
    }
 
    // Check if there is a subtree with equal
    // 1s and 0s or not
    if (d == 0) {
        d = checkSubtree(root->left, d);
    }
 
    if (root->data == 0) {
        d = 1;
        return d;
    }
 
    if (d == 0) {
        d = checkSubtree(root->right, d);
    }
 
    return d;
}
 
// Driver Code
int main()
{
    // Create the Binary Tree
    struct node* root = newnode(1);
    root->right = newnode(0);
    root->right->right = newnode(1);
    root->right->right->right = newnode(1);
    root->left = newnode(0);
    root->left->left = newnode(1);
    root->left->left->left = newnode(1);
    root->left->right = newnode(0);
    root->left->right->left = newnode(1);
    root->left->right->left->left = newnode(1);
    root->left->right->right = newnode(0);
    root->left->right->right->left = newnode(0);
    root->left->right->right->left->left = newnode(1);
 
    // Convert all 0s in tree to -1
    convert(root);
 
    // Convert the tree into a SUM tree
    sum_tree(root);
 
    // Check if required Subtree exists
    int d = 0;
    if (checkSubtree(root, d)) {
        cout << "True" << endl;
    }
    else {
        cout << "False" << endl;
    }
 
    return 0;
}

Java

// Java program to check if there exist a
// subtree with equal number of 1's and 0's
 
import java.util.*;
class GFG{
 
    // Binary Tree Node
    static class node {
        int data;
        node right, left;
    };
     
    // Utility function to create a new node
    static node newnode(int key)
    {
        node temp = new node();
        temp.data = key;
        temp.right = null;
        temp.left = null;
     
        return temp;
    }
     
    // Function to convert all 0's in the
    // tree to -1
    static void convert(node root)
    {
        if (root == null) {
            return;
        }
     
        // Move to right subtree
        convert(root.right);
     
        // Replace the 0's with -1 in the tree
        if (root.data == 0) {
            root.data = -1;
        }
     
        // Move to left subtree
        convert(root.left);
    }
     
    // Function to convert the tree to a SUM tree
    static int sum_tree(node root)
    {
        int a = 0, b = 0;
     
        if (root == null) {
            return 0;
        }
     
        a = sum_tree(root.left);
        b = sum_tree(root.right);
     
        root.data = root.data + a + b;
     
        return root.data;
    }
     
    // Function to check if there exists a subtree
    // with equal no of 1s and 0s
    static int checkSubtree(node root, int d)
    {
        if (root == null) {
            return 0;
        }
     
        // Check if there is a subtree with equal
        // 1s and 0s or not
        if (d == 0) {
            d = checkSubtree(root.left, d);
        }
     
        if (root.data == 0) {
            d = 1;
            return d;
        }
     
        if (d == 0) {
            d = checkSubtree(root.right, d);
        }
     
        return d;
    }
     
    // Driver Code
    public static void main(String args[])
    {
        // Create the Binary Tree
        node root = newnode(1);
        root.right = newnode(0);
        root.right.right = newnode(1);
        root.right.right.right = newnode(1);
        root.left = newnode(0);
        root.left.left = newnode(1);
        root.left.left.left = newnode(1);
        root.left.right = newnode(0);
        root.left.right.left = newnode(1);
        root.left.right.left.left = newnode(1);
        root.left.right.right = newnode(0);
        root.left.right.right.left = newnode(0);
        root.left.right.right.left.left = newnode(1);
     
        // Convert all 0s in tree to -1
        convert(root);
     
        // Convert the tree into a SUM tree
        sum_tree(root);
     
        // Check if required Subtree exists
        int d = 0;
        if (checkSubtree(root, d)>=1) {
            System.out.println("True");
        }
        else {
            System.out.println("False");
        }
    }
}
 
 
// This code is contributed by AbhiThakur

Python3

# Python3 program to check if there exist a
# subtree with equal number of 1's and 0's
 
# Binary Tree Node
class node:
     
    def __init__(self, key):
         
        self.data = key
        self.left = None
        self.right = None
 
# Function to convert all 0's in the
# tree to -1
def convert(root):
 
    if (root == None):
        return
 
    # Move to right subtree
    convert(root.right)
 
    # Replace the 0's with -1
    # in the tree
    if (root.data == 0):
        root.data = -1
 
    # Move to left subtree
    convert(root.left)
 
# Function to convert the tree
# to a SUM tree
def sum_tree(root):
     
    a = 0
    b = 0
 
    if (root == None):
        return 0
 
    a = sum_tree(root.left)
    b = sum_tree(root.right)
 
    root.data = root.data + a + b
 
    return root.data
 
# Function to check if there exists
# a subtree with equal no of 1s and 0s
def checkSubtree(root, d):
     
    if (root == None):
        return 0
 
    # Check if there is a subtree with
    # equal 1s and 0s or not
    if (d == 0):
        d = checkSubtree(root.left, d)
 
    if (root.data == 0):
        d = 1
        return d
 
    if (d == 0):
        d = checkSubtree(root.right, d)
 
    return d
 
# Driver Code
if __name__ == '__main__':
     
    # Create the Binary Tree
    root = node(1)
    root.right = node(0)
    root.right.right = node(1)
    root.right.right.right = node(1)
    root.left = node(0)
    root.left.left = node(1)
    root.left.left.left = node(1)
    root.left.right = node(0)
    root.left.right.left = node(1)
    root.left.right.left.left = node(1)
    root.left.right.right = node(0)
    root.left.right.right.left = node(0)
    root.left.right.right.left.left = node(1)
 
    # Convert all 0s in tree to -1
    convert(root)
 
    # Convert the tree into a SUM tree
    sum_tree(root)
 
    # Check if required Subtree exists
    d = 0
     
    if (checkSubtree(root, d)):
        print("True")
    else:
        print("False")
 
# This code is contributed by mohit kumar 29

C#

// C# program to check if there exist a
// subtree with equal number of 1's and 0's
using System;
 
class GFG{
  
    // Binary Tree Node
    class node {
        public int data;
        public node right, left;
    };
      
    // Utility function to create a new node
    static node newnode(int key)
    {
        node temp = new node();
        temp.data = key;
        temp.right = null;
        temp.left = null;
      
        return temp;
    }
      
    // Function to convert all 0's in the
    // tree to -1
    static void convert(node root)
    {
        if (root == null) {
            return;
        }
      
        // Move to right subtree
        convert(root.right);
      
        // Replace the 0's with -1 in the tree
        if (root.data == 0) {
            root.data = -1;
        }
      
        // Move to left subtree
        convert(root.left);
    }
      
    // Function to convert the tree to a SUM tree
    static int sum_tree(node root)
    {
        int a = 0, b = 0;
      
        if (root == null) {
            return 0;
        }
      
        a = sum_tree(root.left);
        b = sum_tree(root.right);
      
        root.data = root.data + a + b;
      
        return root.data;
    }
      
    // Function to check if there exists a subtree
    // with equal no of 1s and 0s
    static int checkSubtree(node root, int d)
    {
        if (root == null) {
            return 0;
        }
      
        // Check if there is a subtree with equal
        // 1s and 0s or not
        if (d == 0) {
            d = checkSubtree(root.left, d);
        }
      
        if (root.data == 0) {
            d = 1;
            return d;
        }
      
        if (d == 0) {
            d = checkSubtree(root.right, d);
        }
      
        return d;
    }
      
    // Driver Code
    public static void Main(String []args)
    {
        // Create the Binary Tree
        node root = newnode(1);
        root.right = newnode(0);
        root.right.right = newnode(1);
        root.right.right.right = newnode(1);
        root.left = newnode(0);
        root.left.left = newnode(1);
        root.left.left.left = newnode(1);
        root.left.right = newnode(0);
        root.left.right.left = newnode(1);
        root.left.right.left.left = newnode(1);
        root.left.right.right = newnode(0);
        root.left.right.right.left = newnode(0);
        root.left.right.right.left.left = newnode(1);
      
        // Convert all 0s in tree to -1
        convert(root);
      
        // Convert the tree into a SUM tree
        sum_tree(root);
      
        // Check if required Subtree exists
        int d = 0;
        if (checkSubtree(root, d) >= 1) {
            Console.WriteLine("True");
        }
        else {
            Console.WriteLine("False");
        }
    }
}
 
// This code is contributed by sapnasingh4991

Javascript

<script>
 
// Javascript program to check if there exist a
// subtree with equal number of 1's and 0's
class Node
{
    constructor(key)
    {
        this.data = key;
        this.left = null;
        this.right = null;
    }
}
     
// Function to convert all 0's in the
// tree to -1
function convert(root)
{
    if (root == null)
    {
        return;
    }
  
    // Move to right subtree
    convert(root.right);
  
    // Replace the 0's with -1 in the tree
    if (root.data == 0)
    {
        root.data = -1;
    }
  
    // Move to left subtree
    convert(root.left);
}
 
// Function to convert the tree to a SUM tree
function sum_tree(root)
{
    let a = 0, b = 0;
  
    if (root == null)
    {
        return 0;
    }
  
    a = sum_tree(root.left);
    b = sum_tree(root.right);
  
    root.data = root.data + a + b;
  
    return root.data;
}
 
// Function to check if there exists a subtree
// with equal no of 1s and 0s
function checkSubtree(root, d)
{
    if (root == null)
    {
        return 0;
    }
  
    // Check if there is a subtree with equal
    // 1s and 0s or not
    if (d == 0)
    {
        d = checkSubtree(root.left, d);
    }
  
    if (root.data == 0)
    {
        d = 1;
        return d;
    }
  
    if (d == 0)
    {
        d = checkSubtree(root.right, d);
    }
    return d;
}
 
// Driver Code
 
// Create the Binary Tree
let root = new Node(1);
root.right = new Node(0);
root.right.right = new Node(1);
root.right.right.right = new Node(1);
root.left = new Node(0);
root.left.left = new Node(1);
root.left.left.left = new Node(1);
root.left.right = new Node(0);
root.left.right.left = new Node(1);
root.left.right.left.left = new Node(1);
root.left.right.right = new Node(0);
root.left.right.right.left = new Node(0);
root.left.right.right.left.left = new Node(1);
 
// Convert all 0s in tree to -1
convert(root);
 
// Convert the tree into a SUM tree
sum_tree(root);
 
// Check if required Subtree exists
let d = 0;
if (checkSubtree(root, d) >= 1)
{
    document.write("True<br>");
}
else
{
    document.write("False<br>");
}
 
// This code is contributed by unknown2108
 
</script>
Producción: 

True

 

Complejidad de tiempo : O(N) 
Complejidad de espacio : O(1)
 

Publicación traducida automáticamente

Artículo escrito por vabzcode12 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *