Dado un árbol binario que tiene datos en los Nodes como 0 o 1. La tarea es averiguar si existe un subárbol que tenga el mismo número de 1 y 0.
Ejemplos:
Entrada :
Salida: Verdadero
Hay dos subárboles presentes en el árbol anterior donde el número de 1 es igual al número de 0.Entrada :
Salida : Falso
No existe tal subárbol presente que tenga el número de 1 igual al número de 0
Enfoque: La idea es cambiar los datos 0 del árbol a -1. Para que sea muy fácil encontrar el subárbol que tenga el mismo número de 0 y 1. Después de convertir todos los 0 a -1, cree un árbol de suma. Después de crear el árbol de suma, cada Node contendrá la suma de todos los Nodes que se encuentran debajo de él.
Atraviese el árbol nuevamente y encuentre si hay un Node que tiene suma 0, significa que hay un subárbol que tiene el mismo número de 1 y -1, es decir, el mismo número de 1 y 0.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to check if there exist a // subtree with equal number of 1's and 0's #include <bits/stdc++.h> using namespace std; // Binary Tree Node struct node { int data; struct node *right, *left; }; // Utility function to create a new node struct node* newnode(int key) { struct node* temp = new node; temp->data = key; temp->right = NULL; temp->left = NULL; return temp; } // Function to convert all 0's in the // tree to -1 void convert(struct node* root) { if (root == NULL) { return; } // Move to right subtree convert(root->right); // Replace the 0's with -1 in the tree if (root->data == 0) { root->data = -1; } // Move to left subtree convert(root->left); } // Function to convert the tree to a SUM tree int sum_tree(struct node* root) { int a = 0, b = 0; if (root == NULL) { return 0; } a = sum_tree(root->left); b = sum_tree(root->right); root->data = root->data + a + b; return root->data; } // Function to check if there exists a subtree // with equal no of 1s and 0s int checkSubtree(struct node* root, int d) { if (root == NULL) { return 0; } // Check if there is a subtree with equal // 1s and 0s or not if (d == 0) { d = checkSubtree(root->left, d); } if (root->data == 0) { d = 1; return d; } if (d == 0) { d = checkSubtree(root->right, d); } return d; } // Driver Code int main() { // Create the Binary Tree struct node* root = newnode(1); root->right = newnode(0); root->right->right = newnode(1); root->right->right->right = newnode(1); root->left = newnode(0); root->left->left = newnode(1); root->left->left->left = newnode(1); root->left->right = newnode(0); root->left->right->left = newnode(1); root->left->right->left->left = newnode(1); root->left->right->right = newnode(0); root->left->right->right->left = newnode(0); root->left->right->right->left->left = newnode(1); // Convert all 0s in tree to -1 convert(root); // Convert the tree into a SUM tree sum_tree(root); // Check if required Subtree exists int d = 0; if (checkSubtree(root, d)) { cout << "True" << endl; } else { cout << "False" << endl; } return 0; }
Java
// Java program to check if there exist a // subtree with equal number of 1's and 0's import java.util.*; class GFG{ // Binary Tree Node static class node { int data; node right, left; }; // Utility function to create a new node static node newnode(int key) { node temp = new node(); temp.data = key; temp.right = null; temp.left = null; return temp; } // Function to convert all 0's in the // tree to -1 static void convert(node root) { if (root == null) { return; } // Move to right subtree convert(root.right); // Replace the 0's with -1 in the tree if (root.data == 0) { root.data = -1; } // Move to left subtree convert(root.left); } // Function to convert the tree to a SUM tree static int sum_tree(node root) { int a = 0, b = 0; if (root == null) { return 0; } a = sum_tree(root.left); b = sum_tree(root.right); root.data = root.data + a + b; return root.data; } // Function to check if there exists a subtree // with equal no of 1s and 0s static int checkSubtree(node root, int d) { if (root == null) { return 0; } // Check if there is a subtree with equal // 1s and 0s or not if (d == 0) { d = checkSubtree(root.left, d); } if (root.data == 0) { d = 1; return d; } if (d == 0) { d = checkSubtree(root.right, d); } return d; } // Driver Code public static void main(String args[]) { // Create the Binary Tree node root = newnode(1); root.right = newnode(0); root.right.right = newnode(1); root.right.right.right = newnode(1); root.left = newnode(0); root.left.left = newnode(1); root.left.left.left = newnode(1); root.left.right = newnode(0); root.left.right.left = newnode(1); root.left.right.left.left = newnode(1); root.left.right.right = newnode(0); root.left.right.right.left = newnode(0); root.left.right.right.left.left = newnode(1); // Convert all 0s in tree to -1 convert(root); // Convert the tree into a SUM tree sum_tree(root); // Check if required Subtree exists int d = 0; if (checkSubtree(root, d)>=1) { System.out.println("True"); } else { System.out.println("False"); } } } // This code is contributed by AbhiThakur
Python3
# Python3 program to check if there exist a # subtree with equal number of 1's and 0's # Binary Tree Node class node: def __init__(self, key): self.data = key self.left = None self.right = None # Function to convert all 0's in the # tree to -1 def convert(root): if (root == None): return # Move to right subtree convert(root.right) # Replace the 0's with -1 # in the tree if (root.data == 0): root.data = -1 # Move to left subtree convert(root.left) # Function to convert the tree # to a SUM tree def sum_tree(root): a = 0 b = 0 if (root == None): return 0 a = sum_tree(root.left) b = sum_tree(root.right) root.data = root.data + a + b return root.data # Function to check if there exists # a subtree with equal no of 1s and 0s def checkSubtree(root, d): if (root == None): return 0 # Check if there is a subtree with # equal 1s and 0s or not if (d == 0): d = checkSubtree(root.left, d) if (root.data == 0): d = 1 return d if (d == 0): d = checkSubtree(root.right, d) return d # Driver Code if __name__ == '__main__': # Create the Binary Tree root = node(1) root.right = node(0) root.right.right = node(1) root.right.right.right = node(1) root.left = node(0) root.left.left = node(1) root.left.left.left = node(1) root.left.right = node(0) root.left.right.left = node(1) root.left.right.left.left = node(1) root.left.right.right = node(0) root.left.right.right.left = node(0) root.left.right.right.left.left = node(1) # Convert all 0s in tree to -1 convert(root) # Convert the tree into a SUM tree sum_tree(root) # Check if required Subtree exists d = 0 if (checkSubtree(root, d)): print("True") else: print("False") # This code is contributed by mohit kumar 29
C#
// C# program to check if there exist a // subtree with equal number of 1's and 0's using System; class GFG{ // Binary Tree Node class node { public int data; public node right, left; }; // Utility function to create a new node static node newnode(int key) { node temp = new node(); temp.data = key; temp.right = null; temp.left = null; return temp; } // Function to convert all 0's in the // tree to -1 static void convert(node root) { if (root == null) { return; } // Move to right subtree convert(root.right); // Replace the 0's with -1 in the tree if (root.data == 0) { root.data = -1; } // Move to left subtree convert(root.left); } // Function to convert the tree to a SUM tree static int sum_tree(node root) { int a = 0, b = 0; if (root == null) { return 0; } a = sum_tree(root.left); b = sum_tree(root.right); root.data = root.data + a + b; return root.data; } // Function to check if there exists a subtree // with equal no of 1s and 0s static int checkSubtree(node root, int d) { if (root == null) { return 0; } // Check if there is a subtree with equal // 1s and 0s or not if (d == 0) { d = checkSubtree(root.left, d); } if (root.data == 0) { d = 1; return d; } if (d == 0) { d = checkSubtree(root.right, d); } return d; } // Driver Code public static void Main(String []args) { // Create the Binary Tree node root = newnode(1); root.right = newnode(0); root.right.right = newnode(1); root.right.right.right = newnode(1); root.left = newnode(0); root.left.left = newnode(1); root.left.left.left = newnode(1); root.left.right = newnode(0); root.left.right.left = newnode(1); root.left.right.left.left = newnode(1); root.left.right.right = newnode(0); root.left.right.right.left = newnode(0); root.left.right.right.left.left = newnode(1); // Convert all 0s in tree to -1 convert(root); // Convert the tree into a SUM tree sum_tree(root); // Check if required Subtree exists int d = 0; if (checkSubtree(root, d) >= 1) { Console.WriteLine("True"); } else { Console.WriteLine("False"); } } } // This code is contributed by sapnasingh4991
Javascript
<script> // Javascript program to check if there exist a // subtree with equal number of 1's and 0's class Node { constructor(key) { this.data = key; this.left = null; this.right = null; } } // Function to convert all 0's in the // tree to -1 function convert(root) { if (root == null) { return; } // Move to right subtree convert(root.right); // Replace the 0's with -1 in the tree if (root.data == 0) { root.data = -1; } // Move to left subtree convert(root.left); } // Function to convert the tree to a SUM tree function sum_tree(root) { let a = 0, b = 0; if (root == null) { return 0; } a = sum_tree(root.left); b = sum_tree(root.right); root.data = root.data + a + b; return root.data; } // Function to check if there exists a subtree // with equal no of 1s and 0s function checkSubtree(root, d) { if (root == null) { return 0; } // Check if there is a subtree with equal // 1s and 0s or not if (d == 0) { d = checkSubtree(root.left, d); } if (root.data == 0) { d = 1; return d; } if (d == 0) { d = checkSubtree(root.right, d); } return d; } // Driver Code // Create the Binary Tree let root = new Node(1); root.right = new Node(0); root.right.right = new Node(1); root.right.right.right = new Node(1); root.left = new Node(0); root.left.left = new Node(1); root.left.left.left = new Node(1); root.left.right = new Node(0); root.left.right.left = new Node(1); root.left.right.left.left = new Node(1); root.left.right.right = new Node(0); root.left.right.right.left = new Node(0); root.left.right.right.left.left = new Node(1); // Convert all 0s in tree to -1 convert(root); // Convert the tree into a SUM tree sum_tree(root); // Check if required Subtree exists let d = 0; if (checkSubtree(root, d) >= 1) { document.write("True<br>"); } else { document.write("False<br>"); } // This code is contributed by unknown2108 </script>
True
Complejidad de tiempo : O(N)
Complejidad de espacio : O(1)
Publicación traducida automáticamente
Artículo escrito por vabzcode12 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA