Compruebe si el componente conectado más largo forma un palíndromo en un gráfico no dirigido

Dado un grafo no dirigido con vértices V y aristas E , la tarea es verificar si el componente conexo más grande del grafo forma un palíndromo en el grafo no dirigido.

Ejemplos: 

Aporte: 

Salida: 
el componente conexo más largo es  el palíndromo.
Explicación: 
el componente conexo más largo es {5, 15, 5}, 
que forma un palíndromo por valores.

Aporte: 
 

Salida: 
el componente conectado más largo  no es un palíndromo.
Explicación: 
la string más larga es {2, 3, 4, 5}, que no es un palíndromo. 
 

Enfoque: La idea es utilizar el recorrido de búsqueda primero en profundidad para realizar un seguimiento de los componentes conectados en el gráfico no dirigido. En cada recorrido, si la longitud actual del componente conectado es mayor que la longitud global del componente conectado, actualice el componente conectado más largo. Finalmente, verifique que el componente conectado más largo forme un palíndromo.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation to check if
// longest connected component is
// palindrome in undirected graph
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to traverse the undirected
// graph using the Depth first traversal
void depthFirst(int v, vector<int> graph[],
                vector<bool>& visited,
                vector<int>& storeChain)
{
    // Marking the visited
    // vertex as true
    visited[v] = true;
 
    // Store the connected chain
    storeChain.push_back(v);
 
    for (auto i : graph[v]) {
        if (visited[i] == false) {
             
            // Recursive call to
            // the DFS algorithm
            depthFirst(i, graph,
               visited, storeChain);
        }
    }
}
 
// Function to check that the connected
// component forms a palindrome
void checkPalin(int arr[], int n)
{
    // Container to store the frequency
    // of each occurring element
    map<int,int> frequency;
  
    // Container to visit elements
    unordered_set<int> element;
  
    for(int i = 0; i < n; i ++)
    {
        // If element has not been visited already
        // the element is inserted with freq = 1
        // frequency of occurrence, if visited
        // already, then frequency is updated
        if(!(element.find(arr[i]) != element.end()))
        {
            frequency.insert({arr[i], 1});
        }
        else
        {
            frequency[arr[i]] ++;
        }
        element.insert(arr[i]);
    }
  
    // Variable to store final result
    int result = 1;
  
    // For even array size, all the elements
    // are checked for even occurrences, if
    // odd array size, then it is checked if
    // a single element with odd frequency
    // is present or not
    if(n % 2 == 0)
    {
        for(auto i: frequency)
        {
            if(i.second % 2 != 0)
            {
                result = 0;
                break;
            }
        }
    }
    else
    {
        int countFreq = 0;
        for(auto i: frequency)
        {
            if(i.second % 2 != 0)
            {
                countFreq ++;
            }
        }
        if(countFreq != 1)
            result = 0;
    }
  
    // Printing the final result
    if(result)
        cout << "Longest connected component is Palindrome";
    else
        cout << "Longest connected component not a Palindrome";
}
 
// Function to check that longest connected
// component forms a palindrome
void longestConnectionPalin(
    vector<int> graph[], int vertices,
                   vector<int> values)
{
    // Initializing boolean array
    // to mark visited vertices
    vector<bool> visited(10001, false);
 
    // maxChain stores the
    // maximum chain size
    int maxChain = 0;
 
    // Container to store longest chain
    vector<int> maxStoreChain;
 
    // Following loop invokes DFS algorithm
    for (int i = 1; i <= vertices; i++) {
        if (visited[i] == false) {
             
            // Variable to hold
            // temporary length
            int sizeChain;
 
            // Container to store each chain
            vector<int> storeChain;
 
            // DFS algorithm
            depthFirst(i, graph, visited, storeChain);
 
            // Variable to hold each chain size
            sizeChain = storeChain.size();
 
            if (sizeChain > maxChain) {
                maxChain = sizeChain;
                maxStoreChain = storeChain;
            }
        }
    }
 
    // Container to store values
    // of vertices of longest chain
    int longChainValues[maxChain+1];
  
    // Storing the values of longest chain
    for(int i = 0; i < maxChain; i ++)
    {
        int temp = values[maxStoreChain[i]-1];
        longChainValues[i] = temp;
    }
  
    // Function call to check for Palindrome
    checkPalin(longChainValues, maxChain);
}
 
// Driver function to test above function
int main()
{
    // Initializing graph in the form of adjacency list
    vector<int> graph[1001];
 
    // Defining the number of edges and vertices
    int E, V;
    E = 4;
    V = 7;
 
    // Assigning the values for each
    // vertex of the undirected graph
    vector<int> values;
    values.push_back(10);
    values.push_back(25);
    values.push_back(5);
    values.push_back(15);
    values.push_back(5);
    values.push_back(20);
    values.push_back(0);
 
    // Constructing the undirected graph
    graph[1].push_back(2);
    graph[2].push_back(1);
    graph[3].push_back(4);
    graph[4].push_back(3);
    graph[3].push_back(5);
    graph[5].push_back(3);
    graph[6].push_back(7);
    graph[7].push_back(6);
 
    longestConnectionPalin(graph, V, values);
    return 0;
}

Java

// Java implementation to check if
// longest connected component is
// palindrome in undirected graph
import java.util.*;
class GFG{
     
// Initializing boolean array
// to mark visited vertices
static boolean [] visited =
       new boolean[10001];
     
// Container to store longest chain
static Vector<Integer>storeChain =
                      new Vector<>();
 
// Function to traverse
// the undirected graph
// using the Depth first
// traversal
static void depthFirst(int v,
                       Vector<Integer> graph[])
{
  // Marking the visited
  // vertex as true
  visited[v] = true;
 
  // Store the connected chain
  storeChain.add(v);
 
  for (int i : graph[v])
  {
    if (visited[i] == false)
    {
      // Recursive call to
      // the DFS algorithm
      depthFirst(i, graph);
    }
  }
}
 
// Function to check that
// the connected component
// forms a palindrome
static void checkPalin(int arr[],
                       int n)
{
  // Container to store the
  // frequency of each occurring
  // element
  HashMap<Integer,
          Integer> frequency =
                   new HashMap<>();
 
  // Container to visit elements
  HashSet<Integer> element =
                   new HashSet<>();
 
  for(int i = 0; i < n; i ++)
  {
    // If element has not been
    // visited already the element
    // is inserted with freq = 1
    // frequency of occurrence,
    // if visited already, then
    // frequency is updated
    if((element.contains(arr[i])))
    {
      frequency.put(arr[i],
      frequency.get(arr[i]) + 1);
    }
    else
    {
      frequency.put(arr[i], 1);
    }
     
    element.add(arr[i]);
  }
 
  // Variable to store
  // final result
  int result = 1;
 
  // For even array size, all
  // the elements are checked
  // for even occurrences, if
  // odd array size, then it
  // is checked if a single
  // element with odd frequency
  // is present or not
  if(n % 2 == 0)
  {
    for (Map.Entry<Integer,
                   Integer> i : frequency.entrySet())
    {
      if(i.getValue() % 2 != 0)
      {
        result = 0;
        break;
      }
    }
  }
  else
  {
    int countFreq = 0;
    for (Map.Entry<Integer,
                   Integer> i : frequency.entrySet())
    {
      if(i.getValue() % 2 != 0)
      {
        countFreq ++;
      }
    }
    if(countFreq != 1)
      result = 0;
  }
 
  // Printing the
  // final result
  if(result != 0)
    System.out.print("Longest connected " +
                     "component is Palindrome");
  else
    System.out.print("Longest connected " +
                     "component not a Palindrome");
}
 
// Function to check that longest
// connected component forms a palindrome
static void longestConnectionPalin(Vector<Integer> graph[],
                                   int vertices,
                                   Vector<Integer> values)
{
  // maxChain stores the ;
  // maximum chain size
  int maxChain = 0;
 
  // Container to store each chain
  Vector<Integer> maxStoreChain =
                  new Vector<>(); 
  // Following loop invokes
  // DFS algorithm
  for (int i = 1; i <= vertices; i++)
  {
    if (visited[i] == false)
    {
      // Variable to hold
      // temporary length
      int sizeChain;
 
      // DFS algorithm
      depthFirst(i, graph);
 
      // Variable to hold each chain size
      sizeChain = storeChain.size();
 
      if (sizeChain > maxChain)
      {
        maxChain = sizeChain;
        maxStoreChain = storeChain;
      }
    }
  }
 
  // Container to store values
  // of vertices of longest chain
  int []longChainValues =
        new int[maxChain+1];
 
  // Storing the values of
  // longest chain
  for(int i = 0; i < maxChain; i ++)
  {
    int temp = values.get(maxStoreChain.get(i) - 1);
    longChainValues[i] = temp;
  }
 
  // Function call to check
  // for Palindrome
  checkPalin(longChainValues,
             maxChain);
}
 
// Driver code
public static void main(String[] args)
{
  // Initializing graph in the
  // form of adjacency list
  Vector<Integer> graph[] =
                  new Vector[1001];
   
  for (int i = 0; i < graph.length; i++)
    graph[i] = new Vector<Integer>();
   
  // Defining the number of
  // edges and vertices
  int E, V;
  E = 4;
  V = 7;
 
  // Assigning the values
  // for each vertex of
  // the undirected graph
  Vector<Integer> values =
         new Vector<>();
  values.add(10);
  values.add(25);
  values.add(5);
  values.add(15);
  values.add(5);
  values.add(20);
  values.add(0);
 
  // Constructing the
  // undirected graph
  graph[1].add(2);
  graph[2].add(1);
  graph[3].add(4);
  graph[4].add(3);
  graph[3].add(5);
  graph[5].add(3);
  graph[6].add(7);
  graph[7].add(6);
 
  longestConnectionPalin(graph, V, values);
}
}
 
// This code is contributed by gauravrajput1

Python3

# Python3 implementation to check if
# longest connected component is
# palindrome in undirected graph
 
# Function to traverse the undirected
# graph using the Depth first traversal
def depthFirst(v):
     
    global graph, visited, storeChain
 
    # Marking the visited
    # vertex as true
    visited[v] = True
 
    # Store the connected chain
    storeChain.append(v)
 
    for i in graph[v]:
        if (visited[i] == False):
 
            # Recursive call to
            # the DFS algorithm
            depthFirst(i)
 
# Function to check that the connected
# component forms a palindrome
def checkPalin(arr, n):
     
    # Container to store the frequency
    # of each occurring element
    frequency = {}
 
    # Container to visit elements
    element = {}
 
    for i in range(n):
         
        # If element has not been visited already
        # the element is inserted with freq = 1
        # frequency of occurrence, if visited
        # already, then frequency is updated
        if (arr[i] not in element):
            frequency[arr[i]] = 1
        else:
            frequency[arr[i]] += 1
             
        element[arr[i]] = 1
 
    # Variable to store final result
    result = 1
 
    # For even array size, all the elements
    # are checked for even occurrences, if
    # odd array size, then it is checked if
    # a single element with odd frequency
    # is present or not
    if (n % 2 == 0):
        for i in frequency:
            if (frequency[i] % 2 != 0):
                result = 0
                break
    else:
        countFreq = 0
         
        for i in frequency:
            if frequency[i] % 2 != 0:
                countFreq += 1
                 
        if (countFreq != 1):
            result = 0
 
    # Printing the final result
    if(not result):
        print("Longest connected "
              "component is Palindrome")
    else:
        print("Longest connected "
              "component not a Palindrome")
 
# Function to check that longest connected
# component forms a palindrome
def longestConnectionPalin(vertices):
     
    global visited, graph, storeChain, values
 
    # maxChain stores the
    # maximum chain size
    maxChain = 0
 
    # Container to store longest chain
    maxStoreChain = []
 
    # Following loop invokes DFS algorithm
    for i in range(1, vertices + 1):
        if (visited[i] == False):
 
            # Variable to hold
            # temporary length
            sizeChain = 0
 
            # DFS algorithm
            depthFirst(i)
 
            # Variable to hold each chain size
            sizeChain = len(storeChain)
 
            if (sizeChain > maxChain):
                maxChain = sizeChain
                maxStoreChain = storeChain
 
    # Storing the values of longest chain
    for i in range(maxChain):
        temp = values[maxStoreChain[i] - 1]
        longChainValues[i] = temp
 
    # Function call to check for Palindrome
    checkPalin(longChainValues, maxChain)
     
# Driver Code
if __name__ == '__main__':
     
    # Initializing graph in the form
    # of adjacency list
    graph  = [[] for i in range(10001)]
    visited = [False for i in range(10001)]
    storeChain = []
    longChainValues = [0 for i in range(10001)]
 
    # Defining the number of edges and vertices
    E = 4
    V = 7
 
    # Assigning the values for each
    # vertex of the undirected graph
    values = []
    values.append(10)
    values.append(25)
    values.append(5)
    values.append(15)
    values.append(5)
    values.append(20)
    values.append(0)
 
    # Constructing the undirected graph
    graph[1].append(2)
    graph[2].append(1)
    graph[3].append(4)
    graph[4].append(3)
    graph[3].append(5)
    graph[5].append(3)
    graph[6].append(7)
    graph[7].append(6)
 
    longestConnectionPalin(V)
 
# This code is contributed by mohit kumar 29

C#

// C# implementation to check if
// longest connected component is
// palindrome in undirected graph
using System;
using System.Collections.Generic;
 
class GFG{
     
// Initializing bool array
// to mark visited vertices
static bool [] visited = new bool[10001];
     
// Container to store longest chain
static List<int>storeChain = new List<int>();
 
// Function to traverse
// the undirected graph
// using the Depth first
// traversal
static void depthFirst(int v,
                       List<int> []graph)
{
   
  // Marking the visited
  // vertex as true
  visited[v] = true;
 
  // Store the connected chain
  storeChain.Add(v);
 
  foreach (int i in graph[v])
  {
    if (visited[i] == false)
    {
       
      // Recursive call to
      // the DFS algorithm
      depthFirst(i, graph);
    }
  }
}
 
// Function to check that
// the connected component
// forms a palindrome
static void checkPalin(int []arr,
                       int n)
{
   
  // Container to store the
  // frequency of each occurring
  // element
  Dictionary<int,
             int> frequency = new Dictionary<int,
                                             int>();
   
  // Container to visit elements
  HashSet<int> element = new HashSet<int>();
 
  for(int i = 0; i < n; i ++)
  {
     
    // If element has not been
    // visited already the element
    // is inserted with freq = 1
    // frequency of occurrence,
    // if visited already, then
    // frequency is updated
    if ((element.Contains(arr[i])))
    {
      frequency[arr[i]]++;
    }
    else
    {
      frequency.Add(arr[i], 1);
    }
    element.Add(arr[i]);
  }
   
  // Variable to store
  // readonly result
  int result = 1;
   
  // For even array size, all
  // the elements are checked
  // for even occurrences, if
  // odd array size, then it
  // is checked if a single
  // element with odd frequency
  // is present or not
  if (n % 2 == 0)
  {
    foreach(KeyValuePair<int, int> i in frequency)
    {
      if (i.Value % 2 != 0)
      {
        result = 0;
        break;
      }
    }
  }
  else
  {
    int countFreq = 0;
    foreach(KeyValuePair<int, int> i in frequency)
    {
      if (i.Value % 2 != 0)
      {
        countFreq ++;
      }
    }
    if (countFreq != 1)
      result = 0;
  }
 
  // Printing the
  // readonly result
  if (result == 0)
    Console.Write("longest connected " +
                  "component is Palindrome");
  else
    Console.Write("longest connected " +
                  "component not a Palindrome");
}
 
// Function to check that longest
// connected component forms a palindrome
static void longestConnectionPalin(List<int> []graph,
                                   int vertices,
                                   List<int> values)
{
   
  // maxChain stores the ;
  // maximum chain size
  int maxChain = 0;
 
  // Container to store each chain
  List<int> maxStoreChain = new List<int>(); 
   
  // Following loop invokes
  // DFS algorithm
  for(int i = 1; i <= vertices; i++)
  {
    if (visited[i] == false)
    {
       
      // Variable to hold
      // temporary length
      int sizeChain;
       
      // DFS algorithm
      depthFirst(i, graph);
 
      // Variable to hold each chain size
      sizeChain = storeChain.Count;
 
      if (sizeChain > maxChain)
      {
        maxChain = sizeChain;
        maxStoreChain = storeChain;
      }
    }
  }
   
  // Container to store values
  // of vertices of longest chain
  int []longChainValues = new int[maxChain + 1];
   
  // Storing the values of
  // longest chain
  for(int i = 0; i < maxChain; i ++)
  {
    int temp = values[maxStoreChain[i] - 1];
    longChainValues[i] = temp;
  }
 
  // Function call to check
  // for Palindrome
  checkPalin(longChainValues,
             maxChain);
}
 
// Driver code
public static void Main(String[] args)
{
   
  // Initializing graph in the
  // form of adjacency list
  List<int> []graph = new List<int>[1001];
   
  for(int i = 0; i < graph.Length; i++)
    graph[i] = new List<int>();
   
  // Defining the number of
  // edges and vertices
  //int E;
  //E = 4;
   
  int V;
  V = 7;
 
  // Assigning the values
  // for each vertex of
  // the undirected graph
  List<int> values = new List<int>();
  values.Add(10);
  values.Add(25);
  values.Add(5);
  values.Add(15);
  values.Add(5);
  values.Add(20);
  values.Add(0);
   
  // Constructing the
  // undirected graph
  graph[1].Add(2);
  graph[2].Add(1);
  graph[3].Add(4);
  graph[4].Add(3);
  graph[3].Add(5);
  graph[5].Add(3);
  graph[6].Add(7);
  graph[7].Add(6);
 
  longestConnectionPalin(graph, V, values);
}
}
 
// This code is contributed by aashish1995

Javascript

<script>
 
// Javascript implementation to check if
// longest connected component is
// palindrome in undirected graph
 
// Initializing boolean array
// to mark visited vertices
let visited = new Array(10001);
 
// Container to store longest chain
let storeChain = [];
 
// Function to traverse
// the undirected graph
// using the Depth first
// traversal
function depthFirst(v, graph)
{
     
    // Marking the visited
    // vertex as true
    visited[v] = true;
     
    // Store the connected chain
    storeChain.push(v);
     
    for(let i = 0; i < graph[v].length; i++)
    {
        if (visited[graph[v][i]] == false)
        {
             
            // Recursive call to
            // the DFS algorithm
            depthFirst(graph[v][i], graph);
        }
    }
}
 
// Function to check that
// the connected component
// forms a palindrome
function checkPalin(arr, n)
{
    // Container to store the
    // frequency of each occurring
    // element
    let frequency = new Map();
     
    // Container to visit elements
    let element = new Set();
     
    for(let i = 0; i < n; i ++)
    {
         
        // If element has not been
        // visited already the element
        // is inserted with freq = 1
        // frequency of occurrence,
        // if visited already, then
        // frequency is updated
        if ((element.has(arr[i])))
        {
            frequency.set(arr[i],
            frequency.get(arr[i]) + 1);
        }
        else
        {
            frequency.set(arr[i], 1);
        }
        element.add(arr[i]);
    }
     
    // Variable to store
    // final result
    let result = 1;
     
    // For even array size, all
    // the elements are checked
    // for even occurrences, if
    // odd array size, then it
    // is checked if a single
    // element with odd frequency
    // is present or not
    if (n % 2 == 0)
    {
        for(let [key, value] of frequency.entries())
        {
            if (value % 2 != 0)
            {
                result = 0;
                break;
            }
        }
    }
     
    else
    {
        let countFreq = 0;
        for(let [key, value] of frequency.entries())
        {
            if(value % 2 != 0)
            {
                countFreq ++;
            }
        }
        if (countFreq != 1)
            result = 0;
    }
     
    // Printing the
    // final result
    if  (result != 0)
        document.write("Longest connected " +
                       "component is Palindrome");
    else
        document.write("Longest connected " +
                       "component not a Palindrome");
}
 
// Function to check that longest
// connected component forms a palindrome
function longestConnectionPalin(graph, vertices,
                                values)
{
     
    // maxChain stores the ;
    // maximum chain size
    let maxChain = 0;
     
    // Container to store each chain
    let maxStoreChain = [];
     
    // Following loop invokes
    // DFS algorithm
    for(let i = 1; i <= vertices; i++)
    {
        if (visited[i] == false)
        {
             
            // Variable to hold
            // temporary length
            let sizeChain;
             
            // DFS algorithm
            depthFirst(i, graph);
             
            // Variable to hold each chain size
            sizeChain = storeChain.size;
             
            if (sizeChain > maxChain)
            {
                maxChain = sizeChain;
                maxStoreChain = storeChain;
            }
        }
    }
     
    // Container to store values
    // of vertices of longest chain
    let longChainValues = new Array(maxChain + 1);
     
    // Storing the values of
    // longest chain
    for(let i = 0; i < maxChain; i ++)
    {
        let temp = values.get(
            maxStoreChain.get(i) - 1);
        longChainValues[i] = temp;
    }
     
    // Function call to check
    // for Palindrome
    checkPalin(longChainValues,
               maxChain);
}
 
// Driver code
let graph = new Array(1001);
for(let i = 0; i < graph.length; i++)
    graph[i] = [];
    
// Defining the number of
// edges and vertices
let E, V;
E = 4;
V = 7;
 
// Assigning the values
// for each vertex of
// the undirected graph
let values = [];
values.push(10);
values.push(25);
values.push(5);
values.push(15);
values.push(5);
values.push(20);
values.push(0);
 
// Constructing the
// undirected graph
graph[1].push(2);
graph[2].push(1);
graph[3].push(4);
graph[4].push(3);
graph[3].push(5);
graph[5].push(3);
graph[6].push(7);
graph[7].push(6);
 
longestConnectionPalin(graph, V, values);
 
// This code is contributed by unknown2108
 
</script>
Producción: 

Longest connected component is Palindrome

 

Tiempo Complejidad: O(V + E) 
Espacio Auxiliar: O(V + E) 

Publicación traducida automáticamente

Artículo escrito por PratikBasu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *