Compruebe si hay paréntesis equilibrados en una expresión | O(1) espacio

Dada una string de longitud n que tiene paréntesis, su tarea es encontrar si la string dada tiene paréntesis equilibrados o no. Tenga en cuenta que existe una restricción de espacio, es decir, solo se nos permite usar O (1) espacio adicional.
Ver también: Comprobar paréntesis equilibrados
Ejemplos: 
 

Input : (())[]
Output : Yes

Input : ))(({}{
Output : No

C++

// C++ code to check balanced parentheses with
// O(1) space.
#include <stdio.h>
#include <stdlib.h>
 
// Function1 to match closing bracket
int matchClosing(char X[], int start,
                int end, char open, char close)
{
    int c = 1;
    int i = start + 1;
    while (i <= end) {
        if (X[i] == open)
            c++;
        else if (X[i] == close)
            c--;
        if (c == 0)
            return i;
        i++;
    }
    return i;
}
 
// Function1 to match opening bracket
int matchingOpening(char X[], int start,
                    int end, char open, char close)
{
    int c = -1;
    int i = end - 1;
 
    while (i >= start) {
        if (X[i] == open)
            c++;
        else if (X[i] == close)
            c--;
        if (c == 0)
            return i;
        i--;
    }
    return -1;
}
 
// Function to check balanced parentheses
bool isBalanced(char X[], int n)
{
    // helper variables
    int i, j, k, x, start, end;
 
    for (i = 0; i < n; i++) {
        // Handling case of opening parentheses
        if (X[i] == '(')
            j = matchClosing(X, i, n - 1, '(', ')');
        else if (X[i] == '{')
            j = matchClosing(X, i, n - 1, '{', '}');
        else if (X[i] == '[')
            j = matchClosing(X, i, n - 1, '[', ']');
 
        // Handling case of closing parentheses
        else {
            if (X[i] == ')')
                j = matchingOpening(X, 0, i, '(', ')');
            else if (X[i] == '}')
                j = matchingOpening(X, 0, i, '{', '}');
            else if (X[i] == ']')
                j = matchingOpening(X, 0, i, '[', ']');
 
            // If corresponding matching
            // opening parentheses doesn't
            // lie in given interval return 0
            if (j < 0 || j >= i)
                return false;
 
            // else continue
            continue;
        }
 
        // If corresponding closing parentheses
        // doesn't lie in given interval
        // return 0
        if (j >= n || j < 0)
            return false;
 
        // if found, now check for each
        // opening and closing parentheses
        // in this interval
        start = i;
        end = j;
 
        for (k = start + 1; k < end; k++) {
            if (X[k] == '(') {
                x = matchClosing(X, k, end, '(', ')');
                if (!(k < x && x < end)) {
                    return false;
                }
            }
            else if (X[k] == ')') {
                x = matchingOpening(X, start, k, '(', ')');
                if (!(start < x && x < k)) {
                    return false;
                }
            }
 
            if (X[k] == '{') {
                x = matchClosing(X, k, end, '{', '}');
                if (!(k < x && x < end)) {
                    return false;
                }
            }
 
            else if (X[k] == '}') {
                x = matchingOpening(X, start, k, '{', '}');
                if (!(start < x && x < k)) {
                    return false;
                }
            }
            if (X[k] == '[') {
                x = matchClosing(X, k, end, '[', ']');
                if (!(k < x && x < end)) {
                    return false;
                }
            }
            else if (X[k] == ']') {
                x = matchingOpening(X, start, k, '[', ']');
                if (!(start < x && x < k)) {
                    return false;
                }
            }
        }
    }
 
    return true;
}
 
// Driver Code
int main()
{
    char X[] = "[()]()";
    int n = 6;
    if (isBalanced(X, n))
        printf("Yes\n");
    else
        printf("No\n");
 
    char Y[] = "[[()]])";
    n = 7;
    if (isBalanced(Y, n))
        printf("Yes\n");
    else
        printf("No\n");
 
    return 0;
}

Java

// Java code to check balanced parentheses with
// O(1) space.
 
class GFG {
 
// Function1 to match closing bracket
    static int matchClosing(char X[], int start,
            int end, char open, char close) {
        int c = 1;
        int i = start + 1;
        while (i <= end) {
            if (X[i] == open) {
                c++;
            } else if (X[i] == close) {
                c--;
            }
            if (c == 0) {
                return i;
            }
            i++;
        }
        return i;
    }
 
// Function1 to match opening bracket
    static int matchingOpening(char X[], int start,
            int end, char open, char close) {
        int c = -1;
        int i = end - 1;
 
        while (i >= start) {
            if (X[i] == open) {
                c++;
            } else if (X[i] == close) {
                c--;
            }
            if (c == 0) {
                return i;
            }
            i--;
        }
        return -1;
    }
 
// Function to check balanced parentheses
    static boolean isBalanced(char X[], int n) {
        // helper variables
        int i, j = 0, k, x, start, end;
 
        for (i = 0; i < n; i++) {
            // Handling case of opening parentheses
            if (X[i] == '(') {
                j = matchClosing(X, i, n - 1, '(', ')');
            } else if (X[i] == '{') {
                j = matchClosing(X, i, n - 1, '{', '}');
            } else if (X[i] == '[') {
                j = matchClosing(X, i, n - 1, '[', ']');
            } // Handling case of closing parentheses
            else {
                if (X[i] == ')') {
                    j = matchingOpening(X, 0, i, '(', ')');
                } else if (X[i] == '}') {
                    j = matchingOpening(X, 0, i, '{', '}');
                } else if (X[i] == ']') {
                    j = matchingOpening(X, 0, i, '[', ']');
                }
 
                // If corresponding matching
                // opening parentheses doesn't
                // lie in given interval return 0
                if (j < 0 || j >= i) {
                    return false;
                }
 
                // else continue
                continue;
            }
 
            // If corresponding closing parentheses
            // doesn't lie in given interval
            // return 0
            if (j >= n || j < 0) {
                return false;
            }
 
            // if found, now check for each
            // opening and closing parentheses
            // in this interval
            start = i;
            end = j;
 
            for (k = start + 1; k < end; k++) {
                if (X[k] == '(') {
                    x = matchClosing(X, k, end, '(', ')');
                    if (!(k < x && x < end)) {
                        return false;
                    }
                } else if (X[k] == ')') {
                    x = matchingOpening(X, start, k, '(', ')');
                    if (!(start < x && x < k)) {
                        return false;
                    }
                }
 
                if (X[k] == '{') {
                    x = matchClosing(X, k, end, '{', '}');
                    if (!(k < x && x < end)) {
                        return false;
                    }
                } else if (X[k] == '}') {
                    x = matchingOpening(X, start, k, '{', '}');
                    if (!(start < x && x < k)) {
                        return false;
                    }
                }
                if (X[k] == '[') {
                    x = matchClosing(X, k, end, '[', ']');
                    if (!(k < x && x < end)) {
                        return false;
                    }
                } else if (X[k] == ']') {
                    x = matchingOpening(X, start, k, '[', ']');
                    if (!(start < x && x < k)) {
                        return false;
                    }
                }
            }
        }
 
        return true;
    }
 
// Driver Code
    public static void main(String[] args) {
         
    char X[] = "[()]()".toCharArray();
    int n = 6;
    if (isBalanced(X, n))
        System.out.printf("Yes\n");
    else
        System.out.printf("No\n");
  
    char Y[] = "[[()]])".toCharArray();
    n = 7;
    if (isBalanced(Y, n))
        System.out.printf("Yes\n");
    else
        System.out.printf("No\n");
    }
}
//this code contributed by Rajput-Ji

Python 3

# Python 3 code to check balanced
# parentheses with O(1) space.
 
# Function1 to match closing bracket
def matchClosing(X, start, end,
                   open, close):
 
    c = 1
    i = start + 1
    while (i <= end):
        if (X[i] == open):
            c += 1
        elif (X[i] == close):
            c -= 1
        if (c == 0):
            return i
        i += 1
    return i
 
# Function1 to match opening bracket
def matchingOpening(X, start, end,
                      open, close):
 
    c = -1
    i = end - 1
 
    while (i >= start):
        if (X[i] == open):
            c += 1
        elif (X[i] == close):
            c -= 1
        if (c == 0):
            return i
        i -= 1
 
    return -1
 
# Function to check balanced
# parentheses
def isBalanced(X, n):
 
    for i in range(n):
         
        # Handling case of opening
        # parentheses
        if (X[i] == '('):
            j = matchClosing(X, i, n - 1, '(', ')')
        elif (X[i] == '{'):
            j = matchClosing(X, i, n - 1, '{', '}')
        elif (X[i] == '['):
            j = matchClosing(X, i, n - 1, '[', ']')
 
        # Handling case of closing
        # parentheses
        else :
            if (X[i] == ')'):
                j = matchingOpening(X, 0, i, '(', ')')
            elif (X[i] == '}'):
                j = matchingOpening(X, 0, i, '{', '}')
            elif (X[i] == ']'):
                j = matchingOpening(X, 0, i, '[', ']')
 
            # If corresponding matching opening
            # parentheses doesn't lie in given
            # interval return 0
            if (j < 0 or j >= i):
                return False
 
            # else continue
            continue
 
        # If corresponding closing parentheses
        # doesn't lie in given interval, return 0
        if (j >= n or j < 0):
            return False
 
        # if found, now check for each opening and
        # closing parentheses in this interval
        start = i
        end = j
 
        for k in range(start + 1, end) :
            if (X[k] == '(') :
                x = matchClosing(X, k, end, '(', ')')
                if (not(k < x and x < end)):
                    return False
             
            elif (X[k] == ')'):
                x = matchingOpening(X, start, k, '(', ')')
                if (not(start < x and x < k)):
                    return False
 
            if (X[k] == '{'):
                x = matchClosing(X, k, end, '{', '}')
                if (not(k < x and x < end)):
                    return False
 
            elif (X[k] == '}'):
                x = matchingOpening(X, start, k, '{', '}')
                if (not(start < x and x < k)):
                    return False
                 
            if (X[k] == '['):
                x = matchClosing(X, k, end, '[', ']')
                if (not(k < x and x < end)):
                    return False
                 
            elif (X[k] == ']'):
                x = matchingOpening(X, start, k, '[', ']')
                if (not(start < x and x < k)):
                    return False
 
    return True
 
# Driver Code
if __name__ == "__main__":
     
    X = "[()]()"
    n = 6
    if (isBalanced(X, n)):
        print("Yes")
    else:
        print("No")
 
    Y = "[[()]])"
    n = 7
    if (isBalanced(Y, n)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by ita_c

C#

     
// C# code to check balanced parentheses with
// O(1) space.
using System;
public class GFG {
  
// Function1 to match closing bracket
    static int matchClosing(char []X, int start,
            int end, char open, char close) {
        int c = 1;
        int i = start + 1;
        while (i <= end) {
            if (X[i] == open) {
                c++;
            } else if (X[i] == close) {
                c--;
            }
            if (c == 0) {
                return i;
            }
            i++;
        }
        return i;
    }
  
// Function1 to match opening bracket
    static int matchingOpening(char []X, int start,
            int end, char open, char close) {
        int c = -1;
        int i = end - 1;
  
        while (i >= start) {
            if (X[i] == open) {
                c++;
            } else if (X[i] == close) {
                c--;
            }
            if (c == 0) {
                return i;
            }
            i--;
        }
        return -1;
    }
  
// Function to check balanced parentheses
    static bool isBalanced(char []X, int n) {
        // helper variables
        int i, j = 0, k, x, start, end;
  
        for (i = 0; i < n; i++) {
            // Handling case of opening parentheses
            if (X[i] == '(') {
                j = matchClosing(X, i, n - 1, '(', ')');
            } else if (X[i] == '{') {
                j = matchClosing(X, i, n - 1, '{', '}');
            } else if (X[i] == '[') {
                j = matchClosing(X, i, n - 1, '[', ']');
            } // Handling case of closing parentheses
            else {
                if (X[i] == ')') {
                    j = matchingOpening(X, 0, i, '(', ')');
                } else if (X[i] == '}') {
                    j = matchingOpening(X, 0, i, '{', '}');
                } else if (X[i] == ']') {
                    j = matchingOpening(X, 0, i, '[', ']');
                }
  
                // If corresponding matching
                // opening parentheses doesn't
                // lie in given interval return 0
                if (j < 0 || j >= i) {
                    return false;
                }
  
                // else continue
                continue;
            }
  
            // If corresponding closing parentheses
            // doesn't lie in given interval
            // return 0
            if (j >= n || j < 0) {
                return false;
            }
  
            // if found, now check for each
            // opening and closing parentheses
            // in this interval
            start = i;
            end = j;
  
            for (k = start + 1; k < end; k++) {
                if (X[k] == '(') {
                    x = matchClosing(X, k, end, '(', ')');
                    if (!(k < x && x < end)) {
                        return false;
                    }
                } else if (X[k] == ')') {
                    x = matchingOpening(X, start, k, '(', ')');
                    if (!(start < x && x < k)) {
                        return false;
                    }
                }
  
                if (X[k] == '{') {
                    x = matchClosing(X, k, end, '{', '}');
                    if (!(k < x && x < end)) {
                        return false;
                    }
                } else if (X[k] == '}') {
                    x = matchingOpening(X, start, k, '{', '}');
                    if (!(start < x && x < k)) {
                        return false;
                    }
                }
                if (X[k] == '[') {
                    x = matchClosing(X, k, end, '[', ']');
                    if (!(k < x && x < end)) {
                        return false;
                    }
                } else if (X[k] == ']') {
                    x = matchingOpening(X, start, k, '[', ']');
                    if (!(start < x && x < k)) {
                        return false;
                    }
                }
            }
        }
  
        return true;
    }
  
// Driver Code
    public static void Main() {
          
    char []X = "[()]()".ToCharArray();
    int n = 6;
    if (isBalanced(X, n))
        Console.Write("Yes\n");
    else
        Console.Write("No\n");
   
    char []Y = "[[()]])".ToCharArray();
    n = 7;
    if (isBalanced(Y, n))
        Console.Write("Yes\n");
    else
        Console.Write("No\n");
    }
}
// This code contributed by Rajput-Ji

PHP

<?php
// PHP code to check balanced parentheses
// with O(1) space.
 
// Function1 to match closing bracket
function matchClosing($X, $start, $end,
                          $open, $close)
{
    $c = 1;
    $i = $start + 1;
    while ($i <= $end)
    {
        if ($X[$i] == $open)
        {
            $c++;
        }
        else if ($X[$i] == $close)
        {
            $c--;
        }
        if ($c == 0)
        {
            return $i;
        }
        $i++;
    }
    return $i;
}
 
// Function1 to match opening bracket
function matchingOpening($X, $start, $end,
                             $open, $close)
{
    $c = -1;
    $i = $end - 1;
 
    while ($i >= $start)
    {
        if ($X[$i] == $open)
        {
            $c++;
        }
        else if ($X[$i] == $close)
        {
            $c--;
        }
        if ($c == 0)
        {
            return $i;
        }
        $i--;
    }
    return -1;
}
 
// Function to check balanced parentheses
function isBalanced($X, $n)
{
    // helper variables
    $i; $j = 0; $k; $x; $start; $end;
 
    for ($i = 0; $i < $n; $i++)
    {
        // Handling case of opening parentheses
        if ($X[$i] == '(')
        {
            $j = matchClosing($X, $i, $n - 1, '(', ')');
        }
        else if ($X[$i] == '{')
        {
            $j = matchClosing($X, $i, $n - 1, '{', '}');
        }
        else if ($X[$i] == '[')
        {
            $j = matchClosing($X, $i, $n - 1, '[', ']');
        }
         
        // Handling case of closing parentheses
        else
        {
            if ($X[$i] == ')')
            {
                $j = matchingOpening($X, 0, $i, '(', ')');
            }
            else if ($X[$i] == '}')
            {
                $j = matchingOpening($X, 0, $i, '{', '}');
            }
            else if ($X[$i] == ']')
            {
                $j = matchingOpening($X, 0, $i, '[', ']');
            }
 
            // If corresponding matching opening parentheses
            // doesn't lie in given interval return 0
            if ($j < 0 || $j >= $i)
            {
                return false;
            }
 
            // else continue
            continue;
        }
 
        // If corresponding closing parentheses
        // doesn't lie in given interval
        // return 0
        if ($j >= $n || $j < 0)
        {
            return false;
        }
 
        // if found, now check for each opening
        // and closing parentheses in this interval
        $start = $i;
        $end = $j;
 
        for ($k = $start + 1; $k < $end; $k++)
        {
            if ($X[$k] == '(')
            {
                $x = matchClosing($X, $k, $end, '(', ')');
                if (!($k < $x && $x < $end))
                {
                    return false;
                }
            }
            else if ($X[$k] == ')')
            {
                $x = matchingOpening($X, $start, $k, '(', ')');
                if (!($start < $x && $x < $k))
                {
                    return false;
                }
            }
 
            if ($X[$k] == '{')
            {
                $x = matchClosing($X, $k, $end, '{', '}');
                if (!($k < $x && $x < $end))
                {
                    return false;
                }
            }
            else if ($X[$k] == '}')
            {
                $x = matchingOpening($X, $start, $k, '{', '}');
                if (!($start < $x && $x < $k))
                {
                    return false;
                }
            }
            if ($X[$k] == '[')
            {
                $x = matchClosing($X, $k, $end, '[', ']');
                if (!($k < $x && $x < $end))
                {
                    return false;
                }
            }
            else if ($X[$k] == ']')
            {
                $x = matchingOpening($X, $start, $k, '[', ']');
                if (!($start < $x && $x < $k))
                {
                    return false;
                }
            }
        }
    }
 
    return true;
}
 
// Driver Code
$X = str_split("[()]()");
$n = 6;
if (isBalanced($X, $n))
    echo("Yes\n");
else
    echo("No\n");
 
$Y = str_split("[[()]])");
$n = 7;
if (isBalanced($Y, $n))
    echo("Yes\n");
else
    echo("No\n");
 
// This code contributed by Mukul Singh
?>

Javascript

<script>
// Javascript code to check balanced parentheses with
// O(1) space.
     
    // Function1 to match closing bracket
    function matchClosing(X,start,end,open,close)
    {
        let c = 1;
        let i = start + 1;
        while (i <= end) {
            if (X[i] == open) {
                c++;
            } else if (X[i] == close) {
                c--;
            }
            if (c == 0) {
                return i;
            }
            i++;
        }
        return i;
    }
     
    // Function1 to match opening bracket
    function matchingOpening(X,start,end,open,close)
    {
        let c = -1;
        let i = end - 1;
   
        while (i >= start) {
            if (X[i] == open) {
                c++;
            } else if (X[i] == close) {
                c--;
            }
            if (c == 0) {
                return i;
            }
            i--;
        }
        return -1;
    }
     
    // Function to check balanced parentheses
    function isBalanced(X,n)
    {
        // helper variables
        let i, j = 0, k, x, start, end;
   
        for (i = 0; i < n; i++) {
            // Handling case of opening parentheses
            if (X[i] == '(') {
                j = matchClosing(X, i, n - 1, '(', ')');
            } else if (X[i] == '{') {
                j = matchClosing(X, i, n - 1, '{', '}');
            } else if (X[i] == '[') {
                j = matchClosing(X, i, n - 1, '[', ']');
            } // Handling case of closing parentheses
            else {
                if (X[i] == ')') {
                    j = matchingOpening(X, 0, i, '(', ')');
                } else if (X[i] == '}') {
                    j = matchingOpening(X, 0, i, '{', '}');
                } else if (X[i] == ']') {
                    j = matchingOpening(X, 0, i, '[', ']');
                }
   
                // If corresponding matching
                // opening parentheses doesn't
                // lie in given interval return 0
                if (j < 0 || j >= i) {
                    return false;
                }
   
                // else continue
                continue;
            }
   
            // If corresponding closing parentheses
            // doesn't lie in given interval
            // return 0
            if (j >= n || j < 0) {
                return false;
            }
   
            // if found, now check for each
            // opening and closing parentheses
            // in this interval
            start = i;
            end = j;
   
            for (k = start + 1; k < end; k++) {
                if (X[k] == '(') {
                    x = matchClosing(X, k, end, '(', ')');
                    if (!(k < x && x < end)) {
                        return false;
                    }
                } else if (X[k] == ')') {
                    x = matchingOpening(X, start, k, '(', ')');
                    if (!(start < x && x < k)) {
                        return false;
                    }
                }
   
                if (X[k] == '{') {
                    x = matchClosing(X, k, end, '{', '}');
                    if (!(k < x && x < end)) {
                        return false;
                    }
                } else if (X[k] == '}') {
                    x = matchingOpening(X, start, k, '{', '}');
                    if (!(start < x && x < k)) {
                        return false;
                    }
                }
                if (X[k] == '[') {
                    x = matchClosing(X, k, end, '[', ']');
                    if (!(k < x && x < end)) {
                        return false;
                    }
                } else if (X[k] == ']') {
                    x = matchingOpening(X, start, k, '[', ']');
                    if (!(start < x && x < k)) {
                        return false;
                    }
                }
            }
        }
   
        return true;
    }
     
    // Driver Code
    let X="[()]()".split("");
    let n = 6;
    if (isBalanced(X, n))
        document.write("Yes<br>");
    else
        document.write("No<br>");
    
    let Y = "[[()]])".split("");
    n = 7;
    if (isBalanced(Y, n))
        document.write("Yes<br>");
    else
        document.write("No<br>");
     
   // This code is contributed by avanitrachhadiya2155
</script>

Publicación traducida automáticamente

Artículo escrito por UttamSaroha y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *