Compruebe si se puede obtener una string palindrómica concatenando substrings divididas a partir de los mismos índices de dos strings dadas

Dadas dos strings A y B de longitud N , la tarea es comprobar si alguna de las dos strings se forma dividiendo ambas strings en cualquier índice i (0 ≤ i ≤ N – 1) y concatenando A[0, i] y B [i, N – 1] o A[i, N – 1] y B[0, i] respectivamente, formen o no una string palindrómica . Si es cierto, escriba “Sí” . De lo contrario, escriba “No” .

Ejemplos:

Entrada: A = “x”, B = “y”
Salida:
Explicación:
Deje que la string se divida en el índice 0 y luego, 
Divida A del índice 0: “”+”x” A[0, 0] = “” y A[1, 1] = “x”.
Dividir B del índice 0: “”+”y” B[0, 0] = “” y B[1, 1] = “y”.
La concatenación de A[0, 0] y B[1, 1] es = “y” que es una string palindrómica.

Entrada: A = “xbdef”, B = “xecab”
Salida: No

Enfoque: La idea es utilizar la técnica de dos punteros y recorrer la string en el rango [0, N – 1] y comprobar si la concatenación de las substrings A[0, i – 1] y B[i, N – 1] o la concatenación de las substrings A[i, N – 1] y B[0, i – 1] es palindrómica o no. Si se encuentra que alguna de las concatenaciones es palindrómica, imprima «Sí» , de lo contrario, imprima «No» .

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a string
// is palindrome or not
bool isPalindrome(string str)
{
  // Start and end of the
  // string
  int i = 0, j = str.size() - 1;
 
  // Iterate the string
  // until i > j
  while (i < j)
  {
    // If there is a mismatch
    if (str[i] != str[j])
      return false;
 
    // Increment first pointer
    // and decrement the other
    i++;
    j--;
  }
 
  // Given string is a
  // palindrome
  return true;
}
 
// Function two check if
// the strings can be
// combined to form a palindrome
void formPalindrome(string a,
                    string b, int n)
{
  // Initialize array of
  // characters
  char aa[n + 2];
  char bb[n + 2];
  for (int i = 0; i < n + 2; i++)
  {
    aa[i] = ' ';
    bb[i] = ' ';
  }
  // Stores character of string
  // in the character array
  for (int i = 1; i <= n; i++)
  {
    aa[i] = a[i - 1];
    bb[i] = b[i - 1];
  }
 
  bool ok = false;
 
  for (int i = 0; i <= n + 1; i++)
  {
    // Find left and right parts
    // of strings a and b
    string la = "";
    string ra = "";
    string lb = "";
    string rb = "";
 
    for (int j = 1; j <= i - 1; j++)
    {
      // Substring a[j...i-1]
      if (aa[j] == ' ')
        la += "";
      else
        la += aa[j];
 
      // Substring b[j...i-1]
      if (bb[j] == ' ')
        lb += "";
      else
        lb += bb[j];
    }
 
    for (int j = i; j <= n + 1; j++)
    {
      // Substring a[i...n]
      if (aa[j] == ' ')
        ra += "";
      else
        ra += aa[j];
 
      // Substring b[i...n]
      if (bb[j] == ' ')
        rb += "";
      else
        rb += bb[j];
    }
 
    // Check is left part of a +
    // right part of b or vice
    // versa is a palindrome
    if (isPalindrome(la + rb) ||
        isPalindrome(lb + ra))
    {
      ok = true;
      break;
    }
  }
 
  // Print the result
  if (ok)
    cout << ("Yes");
 
  // Otherwise
  else
    cout << ("No");
}
 
// Driver Code
int main()
{
  string A = "bdea";
  string B = "abbb";
  int N = 4;
  formPalindrome(A, B, N);
}
 
// This code is contributed by gauravrajput1

Java

// Java program for the above approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to check if a string
    // is palindrome or not
    static boolean isPalindrome(String str)
    {
 
        // Start and end of the string
        int i = 0, j = str.length() - 1;
 
        // Iterate the string until i > j
        while (i < j) {
 
            // If there is a mismatch
            if (str.charAt(i)
                != str.charAt(j))
                return false;
 
            // Increment first pointer and
            // decrement the other
            i++;
            j--;
        }
 
        // Given string is a palindrome
        return true;
    }
 
    // Function two check if the strings can
    // be combined to form a palindrome
    static void formPalindrome(
        String a, String b, int n)
    {
        // Initialize array of characters
        char aa[] = new char[n + 2];
        char bb[] = new char[n + 2];
 
        Arrays.fill(aa, ' ');
        Arrays.fill(bb, ' ');
 
        // Stores character of string
        // in the character array
        for (int i = 1; i <= n; i++) {
            aa[i] = a.charAt(i - 1);
            bb[i] = b.charAt(i - 1);
        }
 
        boolean ok = false;
 
        for (int i = 0; i <= n + 1; i++) {
 
            // Find left and right parts
            // of strings a and b
            StringBuilder la
                = new StringBuilder();
            StringBuilder ra
                = new StringBuilder();
            StringBuilder lb
                = new StringBuilder();
            StringBuilder rb
                = new StringBuilder();
 
            for (int j = 1;
                 j <= i - 1; j++) {
 
                // Substring a[j...i-1]
                la.append((aa[j] == ' ')
                              ? ""
                              : aa[j]);
 
                // Substring b[j...i-1]
                lb.append((bb[j] == ' ')
                              ? ""
                              : bb[j]);
            }
 
            for (int j = i;
                 j <= n + 1; j++) {
 
                // Substring a[i...n]
                ra.append((aa[j] == ' ')
                              ? ""
                              : aa[j]);
 
                // Substring b[i...n]
                rb.append((bb[j] == ' ')
                              ? ""
                              : bb[j]);
            }
 
            // Check is left part of a +
            // right part of b or vice
            // versa is a palindrome
            if (isPalindrome(la.toString()
                             + rb.toString())
                || isPalindrome(lb.toString()
                                + ra.toString())) {
                ok = true;
                break;
            }
        }
 
        // Print the result
        if (ok)
            System.out.println("Yes");
 
        // Otherwise
        else
            System.out.println("No");
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String A = "bdea";
        String B = "abbb";
 
        int N = 4;
 
        formPalindrome(A, B, N);
    }
}

Python3

# Python3 program for the
# above approach
 
# Function to check if
# a string is palindrome
# or not
def isPalindrome(st):
 
    # Start and end of
    # the string
    i = 0
    j = len(st) - 1
 
    # Iterate the string
    # until i > j
    while (i < j):
 
        # If there is a mismatch
        if (st[i] != st[j]):
            return False
 
        # Increment first pointer
        # and decrement the other
        i += 1
        j -= 1
 
    # Given string is a
    # palindrome
    return True
 
# Function two check if
# the strings can be
# combined to form a
# palindrome
def formPalindrome(a, b, n):
 
    # Initialize array of
    # characters
    aa = [' '] * (n + 2)
    bb = [' '] * (n + 2)
 
    # Stores character of string
    # in the character array
    for i in range(1, n + 1):
        aa[i] = a[i - 1]
        bb[i] = b[i - 1]
 
    ok = False
 
    for i in range(n + 2):
 
        # Find left and right parts
        # of strings a and b
        la = ""
        ra = ""
        lb = ""
        rb = ""
 
        for j in range(1, i):
 
            # Substring a[j...i-1]
            if (aa[j] == ' '):
                la += ""
            else:
                la += aa[j]
 
            # Substring b[j...i-1]
            if (bb[j] == ' '):
                lb += ""
            else:
                lb += bb[j]
 
        for j in range(i, n + 2):
 
            # Substring a[i...n]
            if (aa[j] == ' '):
                ra += ""
            else:
                ra += aa[j]
 
            # Substring b[i...n]
            if (bb[j] == ' '):
                rb += ""
            else:
                rb += bb[j]
 
        # Check is left part of a +
        # right part of b or vice
        # versa is a palindrome
        if (isPalindrome(str(la) +
                         str(rb))
            or isPalindrome(str(lb) +
                            str(ra))):
            ok = True
            break
 
    # Print the result
    if (ok):
        print("Yes")
 
    # Otherwise
    else:
        print("No")
 
# Driver Code
if __name__ == "__main__":
 
    A = "bdea"
    B = "abbb"
    N = 4
    formPalindrome(A, B, N)
 
# This code is contributed by Chitranayal

C#

// C# program for the
// above approach
using System;
using System.Text;
class GFG{
 
// Function to check if a string
// is palindrome or not
static bool isPalindrome(String str)
{
  // Start and end of the string
  int i = 0, j = str.Length - 1;
 
  // Iterate the string
  // until i > j
  while (i < j)
  {
    // If there is a mismatch
    if (str[i] != str[j])
      return false;
 
    // Increment first pointer
    // and decrement the other
    i++;
    j--;
  }
 
  // Given string is
  // a palindrome
  return true;
}
 
// Function two check if the strings can
// be combined to form a palindrome
static void formPalindrome(String a,
                           String b, int n)
{
  // Initialize array of
  // characters
  char []aa = new char[n + 2];
  char []bb = new char[n + 2];
 
  for(int i = 0; i < n + 2; i++)
  {
    aa[i] = ' ';
    bb[i] = ' ';
  }
 
  // Stores character of string
  // in the character array
  for (int i = 1; i <= n; i++)
  {
    aa[i] = a[i-1];
    bb[i] = b[i-1];
  }
 
  bool ok = false;
 
  for (int i = 0;
           i <= n + 1; i++)
  {
    // Find left and right parts
    // of strings a and b
    StringBuilder la =
          new StringBuilder();
    StringBuilder ra =
          new StringBuilder();
    StringBuilder lb =
          new StringBuilder();
    StringBuilder rb =
          new StringBuilder();
 
    for (int j = 1;
             j <= i - 1; j++)
    {
      // Substring a[j...i-1]
      la.Append((aa[j] == ' ') ?
                ' ' : aa[j]);
 
      // Substring b[j...i-1]
      lb.Append((bb[j] == ' ') ?
                ' ' : bb[j]);
    }
 
    for (int j = i;
             j <= n + 1; j++)
    {
      // Substring a[i...n]
      ra.Append((aa[j] == ' ') ?
                ' ' : aa[j]);
 
      // Substring b[i...n]
      rb.Append((bb[j] == ' ') ?
                ' ' : bb[j]);
    }
 
    // Check is left part of a +
    // right part of b or vice
    // versa is a palindrome
    if (isPalindrome(la.ToString() +
                     rb.ToString()) ||
        isPalindrome(lb.ToString() +
                     ra.ToString()))
    {
      ok = true;
      break;
    }
  }
 
  // Print the result
  if (!ok)
    Console.WriteLine("Yes");
 
  // Otherwise
  else
    Console.WriteLine("No");
}
 
// Driver Code
public static void Main(String[] args)
{
  String A = "bdea";
  String B = "abbb";
  int N = 4;
  formPalindrome(A, B, N);
}
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
// Javascript Program to implement
// the above approach
 
// Function to check if a string
// is palindrome or not
function isPalindrome(str)
{
 
  // Start and end of the
  // string
  var i = 0, j = str.length - 1;
 
  // Iterate the string
  // until i > j
  while (i < j)
  {
   
    // If there is a mismatch
    if (str[i] != str[j])
      return false;
 
    // Increment first pointer
    // and decrement the other
    i++;
    j--;
  }
 
  // Given string is a
  // palindrome
  return true;
}
 
// Function two check if
// the strings can be
// combined to form a palindrome
function formPalindrome( a, b, n)
{
 
  // Initialize array of
  // characters
  var aa= new Array(n + 2);
  var bb=new Array(n + 2);
  for (var i = 0; i < n + 2; i++)
  {
    aa[i] = ' ';
    bb[i] = ' ';
  }
   
  // Stores character of string
  // in the character array
  for (var i = 1; i <= n; i++)
  {
    aa[i] = a[i - 1];
    bb[i] = b[i - 1];
  }
 
  var ok = Boolean(false);
 
  for (var i = 0; i <= n + 1; i++)
  {
   
    // Find left and right parts
    // of strings a and b
    var la = "";
    var ra = "";
    var lb = "";
    var rb = "";
 
    for (var j = 1; j <= i - 1; j++)
    {
     
      // Substring a[j...i-1]
      if (aa[j] == ' ')
        la += "";
      else
        la += aa[j];
 
      // Substring b[j...i-1]
      if (bb[j] == ' ')
        lb += "";
      else
        lb += bb[j];
    }
 
    for (var j = i; j <= n + 1; j++)
    {
     
      // Substring a[i...n]
      if (aa[j] == ' ')
        ra += "";
      else
        ra += aa[j];
 
      // Substring b[i...n]
      if (bb[j] == ' ')
        rb += "";
      else
        rb += bb[j];
    }
 
    // Check is left part of a +
    // right part of b or vice
    // versa is a palindrome
    if (isPalindrome(la + rb) || isPalindrome(lb + ra))
    {
      ok = true;
      break;
    }
  }
 
  // Print the result
  if (ok)
    document.write ("Yes");
 
  // Otherwise
  else
    document.write ("No");
}
  var A = "bdea";
  var B = "abbb";
  var N = 4;
  formPalindrome(A, B, N);
 
// This code is contributed by SoumikMondal
</script>
Producción

Yes

Complejidad de tiempo: O(N 2 ) donde N es la longitud de las strings dadas.
Espacio Auxiliar: O(N)

Enfoque alternativo de Python (dos punteros + corte):

Este enfoque sigue el siguiente camino: 

  1. Definir la comprobación de funciones
  2. Tome dos punteros i, j en la posición 0, n-1 respectivamente
  3. Si el primer carácter de a y el segundo carácter de b no coinciden, rompemos (ya que estamos buscando el palíndromo)
  4. Si coincide, simplemente incrementamos el puntero.
  5. Concatenaríamos la forma a[i:j+1] de la primera string y b[i:j+1] de la segunda string y verificaríamos la condición de palíndromo
  6. Si es así devolvemos Verdadero

C++

// C++ program to implement
// the above approach
#include<bits/stdc++.h>
using namespace std;
 
string rev(string str)
{
  int st = 0;
  int ed = str.length() - 1;
  string s = str;
   
  while(st < ed)
  {
    swap(s[st],
         s[ed]);
    st++;
    ed--;
  }
  return s;
}
 
 
bool check(string a,
           string b, int n)
{
  int i = 0;
  int j = n - 1;
 
  // iterate through the
  // length if we could
  // find a[i]==b[j] we could
  // increment I and decrement j
  while(i < n)
  {
    if(a[i] != b[j])
      break;
 
    // else we could just break
    // the loop as its not a
    // palindrome type sequence
    i += 1;
    j -= 1;
 
    // we could concatenate the
    // a's left part +b's right
    // part in a variable a and
    // a's right part+b's left
    // in the variable b
    string xa = a.substr(i, j + 1 - i);
    string xb = b.substr(i, j + 1 - i);
 
    // we would check for the
    // palindrome condition if
    // yes we print True else False
    if((xa == rev(xa)) or
       (xb == rev(xb)))
      return true;
  }
  return false;
}
     
// Driver code
int main()
{
  string a = "xbdef";
  string b = "cabex";
  if (check(a, b,
            a.length()) == true or
      check(b, a,
            a.length()) == true)
    cout << "True";
  else
    cout << "False";
}
 
// This code is contributed by Surendra_Gangwar

Java

// Java program to implement
// the above approach
import java.util.*;
import java.io.*;
 
class GFG{
     
public static String rev(String str)
{
    int st = 0;
    int ed = str.length() - 1;
    char[] s = str.toCharArray();
     
    while(st < ed)
    {
        char temp = s[st];
        s[st] = s[ed];
        s[ed] = temp;
        st++;
        ed--;
    }
    return (s.toString());
}
   
public static boolean check(String a,
                            String b, int n)
{
    int i = 0;
    int j = n - 1;
     
    // Iterate through the
    // length if we could
    // find a[i]==b[j] we could
    // increment I and decrement j
    while(i < n)
    {
        if (a.charAt(i) != b.charAt(j))
            break;
         
        // Else we could just break
        // the loop as its not a
        // palindrome type sequence
        i += 1;
        j -= 1;
         
        // We could concatenate the
        // a's left part +b's right
        // part in a variable a and
        // a's right part+b's left
        // in the variable b
        String xa = a.substring(i, j + 1);
        String xb = b.substring(i, j + 1);
         
        // We would check for the
        // palindrome condition if
        // yes we print True else False
        StringBuffer XA = new StringBuffer(xa);
        XA.reverse();
        StringBuffer XB = new StringBuffer(xb);
        XB.reverse();
         
        if (xa == XA.toString() ||
            xb == XB.toString())
        {
            return true;
        }
    }
    return false;
}
 
// Driver Code
public static void main(String[] args)
{
    String a = "xbdef";
    String b = "cabex";
     
    if (check(a, b, a.length()) ||
        check(b, a, a.length()))
        System.out.println("True");
    else
        System.out.println("False");
}
}
 
// This code is contributed by divyesh072019

Python3

# Python3 program to implement
# the above approach
def check(a, b, n):
    i, j = 0, n - 1
     
    # iterate through the length if
    # we could find a[i]==b[j] we could
    # increment I and decrement j
    while(i < n):
        if(a[i] != b[j]):
             
            # else we could just break
            # the loop as its not a palindrome
            # type sequence
            break 
             
        i += 1
        j -= 1
         
        # we could concatenate the a's left part
        # +b's right part in a variable a and  a's
        # right part+b's left in the variable b
        xa = a[i:j+1]
        xb = b[i:j+1]
         
        # we would check for the palindrome condition
        # if yes we print True else False
        if(xa == xa[::-1] or xb == xb[::-1]):
            return True
 
 
a = "xbdef"
b = "cabex"
if check(a, b, len(a)) == True or check(b, a, len(a)) == True:
    print(True)
else:
    print(False)
 
     
# CODE CONTRIBUTED BY SAIKUMAR KUDIKALA

C#

// C# program to implement
// the above approach
using System;
class GFG {
     
    static string rev(string str)
    {
      int st = 0;
      int ed = str.Length - 1;
      char[] s = str.ToCharArray();
     
      while(st < ed)
      {
        char temp = s[st];
        s[st] = s[ed];
        s[ed] = temp;
        st++;
        ed--;
      }
      return new string(s);
    }
      
      
    static bool check(string a,
               string b, int n)
    {
      int i = 0;
      int j = n - 1;
      
      // iterate through the
      // length if we could
      // find a[i]==b[j] we could
      // increment I and decrement j
      while(i < n)
      {
        if(a[i] != b[j])
          break;
      
        // else we could just break
        // the loop as its not a
        // palindrome type sequence
        i += 1;
        j -= 1;
      
        // we could concatenate the
        // a's left part +b's right
        // part in a variable a and
        // a's right part+b's left
        // in the variable b
        string xa = a.Substring(i, j + 1 - i);
        string xb = b.Substring(i, j + 1 - i);
      
        // we would check for the
        // palindrome condition if
        // yes we print True else False
        char[] XA = xa.ToCharArray();
        Array.Reverse(XA);
        char[] XB = xb.ToCharArray();
        Array.Reverse(XB);
         
        if(string.Compare(xa, new string(XA)) == 0 ||
           string.Compare(xb, new string(XB)) == 0)
          return true;
      }
      return false;
    }
 
  // Driver code
  static void Main()
  {
      string a = "xbdef";
      string b = "cabex";
      if (check(a, b, a.Length) || check(b, a, a.Length))
        Console.WriteLine("True");
      else
        Console.WriteLine("False");
  }
}
 
// This code is contributed by divyeshrabadiya07

Javascript

<script>
 
      // JavaScript program to implement
      // the above approach
      function rev(str) {
        var st = 0;
        var ed = str.length - 1;
        var s = str.split("");
 
        while (st < ed) {
          var temp = s[st];
          s[st] = s[ed];
          s[ed] = temp;
          st++;
          ed--;
        }
        return s.join();
      }
 
      function check(a, b, n) {
        var i = 0;
        var j = n - 1;
 
        // iterate through the
        // length if we could
        // find a[i]==b[j] we could
        // increment I and decrement j
        while (i < n) {
          if (a[i] !== b[j]) break;
 
          // else we could just break
          // the loop as its not a
          // palindrome type sequence
          i += 1;
          j -= 1;
 
          // we could concatenate the
          // a's left part +b's right
          // part in a variable a and
          // a's right part+b's left
          // in the variable b
          var xa = a.substring(i, j + 1 - i);
          var xb = b.substring(i, j + 1 - i);
 
          // we would check for the
          // palindrome condition if
          // yes we print True else False
          var XA = xa.split("");
          XA.sort().reverse();
          var XB = xb.split("");
          XB.sort().reverse();
 
          if (xa === XA.join("") || xb === XB.join("")) return true;
        }
        return false;
      }
 
      // Driver code
      var a = "xbdef";
      var b = "cabex";
      if (check(a, b, a.length) || check(b, a, a.length))
        document.write("True");
      else document.write("False");
       
</script>

Producción:

False

Complejidad de tiempo: O( | a |*| a+b |) ,donde | un | es el tamaño de la string a y | a+b | es el tamaño de la string (a+b)

Complejidad espacial : O( | a+b |)

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *