Dado un tablero de ajedrez infinito con las mismas reglas que el del ajedrez. También se dan las coordenadas de N caballos en el tablero de ajedrez infinito (-10 ^ 9 <= x, y <= 10 ^ 9 ) y la coordenada del rey, la tarea es comprobar si el rey está en jaque mate o no.
Ejemplos:
Input: a[] = { {1, 0}, {0, 2}, {2, 5}, {4, 4}, {5, 0}, {6, 2} } king -> {3, 2} Output: Yes The king cannot make any move as it has been check mate. Input: a[] = { {1, 1} } king -> {3, 4} Output: No The king can make valid moves.
Enfoque: El movimiento del caballo es inusual entre las piezas de ajedrez. Se mueve a un cuadrado que está a dos cuadrados de distancia horizontalmente y un cuadrado verticalmente, o dos cuadrados verticalmente y un cuadrado horizontalmente. El movimiento completo, por lo tanto, se parece a la letra «L» en todas las formas posibles (8 movimientos posibles). Por lo tanto, use un mapa hash de pares para marcar todas las coordenadas posibles donde el caballo puede moverse. Si el Rey no puede moverse a ninguna de sus 8 coordenadas cercanas, es decir, si la coordenada es rota por el movimiento de un caballo, entonces es un «jaque mate».
A continuación se muestra la implementación del enfoque anterior.
C++
// C++ program for checking if a king // can move a valid move or not when // N nights are there in a modified chessboard #include <bits/stdc++.h> using namespace std; bool checkCheckMate(pair<int, int> a[], int n, int kx, int ky) { // Pair of hash to mark the coordinates map<pair<int, int>, int> mpp; // iterate for Given N knights for (int i = 0; i < n; i++) { int x = a[i].first; int y = a[i].second; // mark all the "L" shaped coordinates // that can be reached by a Knight // initial position mpp[{ x, y }] = 1; // 1-st move mpp[{ x - 2, y + 1 }] = 1; // 2-nd move mpp[{ x - 2, y - 1 }] = 1; // 3-rd move mpp[{ x + 1, y + 2 }] = 1; // 4-th move mpp[{ x + 1, y - 2 }] = 1; // 5-th move mpp[{ x - 1, y + 2 }] = 1; // 6-th move mpp[{ x + 2, y + 1 }] = 1; // 7-th move mpp[{ x + 2, y - 1 }] = 1; // 8-th move mpp[{ x - 1, y - 2 }] = 1; } // iterate for all possible 8 coordinates for (int i = -1; i < 2; i++) { for (int j = -1; j < 2; j++) { int nx = kx + i; int ny = ky + j; if (i != 0 && j != 0) { // check a move can be made or not if (!mpp[{ nx, ny }]) { return true; } } } } // any moves return false; } // Driver Code int main() { pair<int, int> a[] = { { 1, 0 }, { 0, 2 }, { 2, 5 }, { 4, 4 }, { 5, 0 }, { 6, 2 }}; int n = sizeof(a) / sizeof(a[0]); int x = 3, y = 2; if (checkCheckMate(a, n, x, y)) cout << "Not Checkmate!"; else cout << "Yes its checkmate!"; return 0; }
Java
// Java program for checking if a king // can move a valid move or not when // N nights are there in a modified chessboard import java.util.*; class GFG { static class pair { int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } static boolean checkCheckMate(pair a[], int n, int kx, int ky) { // Pair of hash to mark the coordinates HashMap<pair, Integer> mpp = new HashMap<pair, Integer>(); // iterate for Given N knights for (int i = 0; i < n; i++) { int x = a[i].first; int y = a[i].second; // mark all the "L" shaped coordinates // that can be reached by a Knight // initial position mpp.put(new pair( x, y ), 1); // 1-st move mpp.put(new pair( x - 2, y + 1 ), 1); // 2-nd move mpp.put(new pair( x - 2, y - 1 ), 1); // 3-rd move mpp.put(new pair( x + 1, y + 2 ), 1); // 4-th move mpp.put(new pair( x + 1, y - 2 ), 1); // 5-th move mpp.put(new pair( x - 1, y + 2 ), 1); // 6-th move mpp.put(new pair( x + 2, y + 1 ), 1); // 7-th move mpp.put(new pair( x + 2, y - 1 ), 1); // 8-th move mpp.put(new pair( x - 1, y - 2 ), 1); } // iterate for all possible 8 coordinates for (int i = -1; i < 2; i++) { for (int j = -1; j < 2; j++) { int nx = kx + i; int ny = ky + j; if (i != 0 && j != 0) { // check a move can be made or not pair p =new pair(nx, ny ); if (mpp.get(p) != null) { return true; } } } } // any moves return false; } // Driver Code public static void main(String[] args) { pair a[] = {new pair( 1, 0 ), new pair( 0, 2 ), new pair( 2, 5 ), new pair( 4, 4 ), new pair( 5, 0 ), new pair( 6, 2 )}; int n = a.length; int x = 3, y = 2; if (checkCheckMate(a, n, x, y)) System.out.println("Not Checkmate!"); else System.out.println("Yes its checkmate!"); } } // This code is contributed by PrinciRaj1992
Python3
# Python3 program for checking if a king # can move a valid move or not when # N nights are there in a modified chessboard def checkCheckMate(a, n, kx, ky): # Pair of hash to mark the coordinates mpp = {} # iterate for Given N knights for i in range(0, n): x = a[i][0] y = a[i][1] # mark all the "L" shaped coordinates # that can be reached by a Knight # initial position mpp[(x, y)] = 1 # 1-st move mpp[(x - 2, y + 1)] = 1 # 2-nd move mpp[(x - 2, y - 1)] = 1 # 3-rd move mpp[(x + 1, y + 2)] = 1 # 4-th move mpp[(x + 1, y - 2)] = 1 # 5-th move mpp[(x - 1, y + 2)] = 1 # 6-th move mpp[(x + 2, y + 1)] = 1 # 7-th move mpp[(x + 2, y - 1)] = 1 # 8-th move mpp[(x - 1, y - 2)] = 1 # iterate for all possible 8 coordinates for i in range(-1, 2): for j in range(-1, 2): nx = kx + i ny = ky + j if i != 0 and j != 0: # check a move can be made or not if not mpp[(nx, ny)]: return True # any moves return False # Driver Code if __name__ == "__main__": a = [[1, 0], [0, 2], [2, 5], [4, 4], [5, 0], [6, 2]] n = len(a) x, y = 3, 2 if checkCheckMate(a, n, x, y): print("Not Checkmate!") else: print("Yes its checkmate!") # This code is contributed by Rituraj Jain
C#
// C# program for checking if a king // can move a valid move or not when // N nights are there in a modified chessboard using System; using System.Collections.Generic; class GFG { class pair { public int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } static bool checkCheckMate(pair []a, int n, int kx, int ky) { // Pair of hash to mark the coordinates Dictionary<pair, int> mpp = new Dictionary<pair, int>(); // iterate for Given N knights for (int i = 0; i < n; i++) { int x = a[i].first; int y = a[i].second; // mark all the "L" shaped coordinates // that can be reached by a Knight // initial position mpp.Add(new pair( x, y ), 1); // 1-st move mpp.Add(new pair( x - 2, y + 1 ), 1); // 2-nd move mpp.Add(new pair( x - 2, y - 1 ), 1); // 3-rd move mpp.Add(new pair( x + 1, y + 2 ), 1); // 4-th move mpp.Add(new pair( x + 1, y - 2 ), 1); // 5-th move mpp.Add(new pair( x - 1, y + 2 ), 1); // 6-th move mpp.Add(new pair( x + 2, y + 1 ), 1); // 7-th move mpp.Add(new pair( x + 2, y - 1 ), 1); // 8-th move mpp.Add(new pair( x - 1, y - 2 ), 1); } // iterate for all possible 8 coordinates for (int i = -1; i < 2; i++) { for (int j = -1; j < 2; j++) { int nx = kx + i; int ny = ky + j; if (i != 0 && j != 0) { // check a move can be made or not pair p = new pair(nx, ny); if (mpp.ContainsKey(p)) { return true; } } } } // any moves return false; } // Driver Code public static void Main(String[] args) { pair []a = {new pair( 1, 0 ), new pair( 0, 2 ), new pair( 2, 5 ), new pair( 4, 4 ), new pair( 5, 0 ), new pair( 6, 2 )}; int n = a.Length; int x = 3, y = 2; if (checkCheckMate(a, n, x, y)) Console.WriteLine("Not Checkmate!"); else Console.WriteLine("Yes its checkmate!"); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // JavaScript program for checking if a king // can move a valid move or not when // N nights are there in a modified chessboard class pair { constructor(first, second) { this.first = first; this.second = second; } } function checkCheckMate(a, n, kx, ky) { // Pair of hash to mark the coordinates var mpp = new Map(); // iterate for Given N knights for (var i = 0; i < n; i++) { var x = a[i].first; var y = a[i].second; // mark all the "L" shaped coordinates // that can be reached by a Knight // initial position mpp.set(new pair( x, y ), 1); // 1-st move mpp.set(new pair( x - 2, y + 1 ), 1); // 2-nd move mpp.set(new pair( x - 2, y - 1 ), 1); // 3-rd move mpp.set(new pair( x + 1, y + 2 ), 1); // 4-th move mpp.set(new pair( x + 1, y - 2 ), 1); // 5-th move mpp.set(new pair( x - 1, y + 2 ), 1); // 6-th move mpp.set(new pair( x + 2, y + 1 ), 1); // 7-th move mpp.set(new pair( x + 2, y - 1 ), 1); // 8-th move mpp.set(new pair( x - 1, y - 2 ), 1); } // iterate for all possible 8 coordinates for (var i = -1; i < 2; i++) { for (var j = -1; j < 2; j++) { var nx = kx + i; var ny = ky + j; if (i != 0 && j != 0) { // check a move can be made or not var p = new pair(nx, ny); if (mpp.has(p)) { return true; } } } } // any moves return false; } // Driver Code var a = [new pair( 1, 0 ), new pair( 0, 2 ), new pair( 2, 5 ), new pair( 4, 4 ), new pair( 5, 0 ), new pair( 6, 2 )]; var n = a.length; var x = 3, y = 2; if (checkCheckMate(a, n, x, y)) document.write("Not Checkmate!"); else document.write("Yes its checkmate!"); </script>
Yes its checkmate!
Complejidad temporal: O(N).
Espacio Auxiliar: O(N)