Conectar Nodes al mismo nivel (transversal de orden de niveles)

Escribe una función para conectar todos los Nodes adyacentes al mismo nivel en un árbol binario.

Ejemplo: 

Input Tree
       A
      / \
     B   C
    / \   \
   D   E   F


Output Tree
       A--->NULL
      / \
     B-->C-->NULL
    / \   \
   D-->E-->F-->NULL

Ya hemos discutido el tiempo O (n ^ 2) y el enfoque O en los Nodes de conexión al mismo nivel que el recorrido de morris en el peor de los casos puede ser O (n) y llamarlo para establecer el puntero derecho puede resultar en una complejidad de tiempo O (n ^ 2) .

En esta publicación, hemos discutido el cruce de orden de nivel con marcadores NULL que se necesitan para marcar niveles en el árbol. 

Implementación:

C++

// Connect nodes at same level using level order
// traversal.
#include <bits/stdc++.h>
using namespace std;
 
struct Node {
    int data;
    struct Node* left, *right, *nextRight;
};
 
// Sets nextRight of all nodes of a tree
void connect(struct Node* root)
{
    queue<Node*> q;
    q.push(root);
 
    // null marker to represent end of current level
    q.push(NULL);
 
    // Do Level order of tree using NULL markers
    while (!q.empty()) {
        Node *p = q.front();
        q.pop();
        if (p != NULL) {
 
            // next element in queue represents next
            // node at current Level
            p->nextRight = q.front();
 
            // push left and right children of current
            // node
            if (p->left)
                q.push(p->left);
            if (p->right)
                q.push(p->right);
        }
        
        // if queue is not empty, push NULL to mark
        // nodes at this level are visited
        else if (!q.empty())
            q.push(NULL);
    }
}
 
/* UTILITY FUNCTIONS */
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct Node* newnode(int data)
{
    struct Node* node = (struct Node*)
                         malloc(sizeof(struct Node));
    node->data = data;
    node->left = node->right = node->nextRight = NULL;
    return (node);
}
 
/* Driver program to test above functions*/
int main()
{
 
    /* Constructed binary tree is
              10
            /   \
          8      2
        /         \
      3            90
    */
    struct Node* root = newnode(10);
    root->left = newnode(8);
    root->right = newnode(2);
    root->left->left = newnode(3);
    root->right->right = newnode(90);
 
    // Populates nextRight pointer in all nodes
    connect(root);
 
    // Let us check the values of nextRight pointers
    printf("Following are populated nextRight pointers in \n"
     "the tree (-1 is printed if there is no nextRight) \n");
    printf("nextRight of %d is %d \n", root->data,
     root->nextRight ? root->nextRight->data : -1);
    printf("nextRight of %d is %d \n", root->left->data,
     root->left->nextRight ? root->left->nextRight->data : -1);
    printf("nextRight of %d is %d \n", root->right->data,
     root->right->nextRight ? root->right->nextRight->data : -1);
    printf("nextRight of %d is %d \n", root->left->left->data,
     root->left->left->nextRight ? root->left->left->nextRight->data : -1);
    printf("nextRight of %d is %d \n", root->right->right->data,
     root->right->right->nextRight ? root->right->right->nextRight->data : -1);
    return 0;
}

Java

// Connect nodes at same level using level order
// traversal.
import java.util.LinkedList;
import java.util.Queue;
public class Connect_node_same_level {
     
    // Node class
    static class Node {
        int data;
        Node left, right, nextRight;
        Node(int data){
            this.data = data;
            left = null;
            right = null;
            nextRight = null;
        }
    };
      
    // Sets nextRight of all nodes of a tree
    static void connect(Node root)
    {
        Queue<Node> q = new LinkedList<Node>();
        q.add(root);
      
        // null marker to represent end of current level
        q.add(null);
      
        // Do Level order of tree using NULL markers
        while (!q.isEmpty()) {
            Node p = q.peek();
            q.remove();
            if (p != null) {
      
                // next element in queue represents next
                // node at current Level
                p.nextRight = q.peek();
      
                // push left and right children of current
                // node
                if (p.left != null)
                    q.add(p.left);
                if (p.right != null)
                    q.add(p.right);
            }
             
            // if queue is not empty, push NULL to mark
            // nodes at this level are visited
            else if (!q.isEmpty())
                q.add(null);
        }
    }
      
    /* Driver program to test above functions*/
    public static void main(String args[])
    {
      
        /* Constructed binary tree is
                  10
                /   \
              8      2
            /         \
          3            90
        */
        Node root = new Node(10);
        root.left = new Node(8);
        root.right = new Node(2);
        root.left.left = new Node(3);
        root.right.right = new Node(90);
      
        // Populates nextRight pointer in all nodes
        connect(root);
      
        // Let us check the values of nextRight pointers
        System.out.println("Following are populated nextRight pointers in \n" +
      "the tree (-1 is printed if there is no nextRight)");
        System.out.println("nextRight of "+ root.data +" is "+
        ((root.nextRight != null) ? root.nextRight.data : -1));
        System.out.println("nextRight of "+ root.left.data+" is "+
        ((root.left.nextRight != null) ? root.left.nextRight.data : -1));
        System.out.println("nextRight of "+ root.right.data+" is "+
        ((root.right.nextRight != null) ? root.right.nextRight.data : -1));
        System.out.println("nextRight of "+  root.left.left.data+" is "+
        ((root.left.left.nextRight != null) ? root.left.left.nextRight.data : -1));
        System.out.println("nextRight of "+  root.right.right.data+" is "+
        ((root.right.right.nextRight != null) ? root.right.right.nextRight.data : -1));
    }
}   
// This code is contributed by Sumit Ghosh

Python3

#! /usr/bin/env python3
 
# connect nodes at same level using level order traversal
import sys
 
 
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
        self.nextRight = None
 
    def __str__(self):
        return '{}'.format(self.data)
 
 
def printLevelByLevel(root):
    # print level by level
    if root:
        node = root
        while node:
            print('{}'.format(node.data), end=' ')
            node = node.nextRight
        print()
        if root.left:
            printLevelByLevel(root.left)
        else:
            printLevelByLevel(root.right)
 
 
def inorder(root):
    if root:
        inorder(root.left)
        print(root.data, end=' ')
        inorder(root.right)
 
 
def connect(root):
    # set nextRight of all nodes of a tree
    queue = []
    queue.append(root)
    # null marker to represent end of current level
    queue.append(None)
    # do level order of tree using None markers
    while queue:
        p = queue.pop(0)
        if p:
            # next element in queue represents
            # next node at current level
            p.nextRight = queue[0]
            # pus left and right children of current node
            if p.left:
                queue.append(p.left)
            if p.right:
                queue.append(p.right)
        else if queue:
            queue.append(None)
 
 
def main():
    """Driver program to test above functions.
        Constructed binary tree is
                10
               /  \
             8      2
            /        \
          3            90
    """
 
    root = Node(10)
    root.left = Node(8)
    root.right = Node(2)
    root.left.left = Node(3)
    root.right.right = Node(90)
 
    # Populates nextRight pointer in all nodes
    connect(root)
 
    # Let us check the values of nextRight pointers
    print("Following are populated nextRight pointers in \n"
    "the tree (-1 is printed if there is no nextRight) \n")
    if(root.nextRight != None):
        print("nextRight of %d is %d \n" %(root.data,root.nextRight.data))
    else:
        print("nextRight of %d is %d \n" %(root.data,-1))
    if(root.left.nextRight != None):
        print("nextRight of %d is %d \n" %(root.left.data,root.left.nextRight.data))
    else:
        print("nextRight of %d is %d \n" %(root.left.data,-1))
    if(root.right.nextRight != None):
        print("nextRight of %d is %d \n" %(root.right.data,root.right.nextRight.data))
    else:
        print("nextRight of %d is %d \n" %(root.right.data,-1))
    if(root.left.left.nextRight != None):
        print("nextRight of %d is %d \n" %(root.left.left.data,root.left.left.nextRight.data))
    else:
        print("nextRight of %d is %d \n" %(root.left.left.data,-1))
    if(root.right.right.nextRight != None):
        print("nextRight of %d is %d \n" %(root.right.right.data,root.right.right.nextRight.data))
    else:
        print("nextRight of %d is %d \n" %(root.right.right.data,-1))
         
    print()
 
 
if __name__ == "__main__":
    main()
 
# This code is contributed by Ram Basnet

C#

// Connect nodes at same level using level order
// traversal.
using System;
using System.Collections.Generic;
 
public class Connect_node_same_level
{
     
    // Node class
    class Node
    {
        public int data;
        public Node left, right, nextRight;
        public Node(int data)
        {
            this.data = data;
            left = null;
            right = null;
            nextRight = null;
        }
    };
     
    // Sets nextRight of all nodes of a tree
    static void connect(Node root)
    {
        Queue<Node> q = new Queue<Node>();
        q.Enqueue(root);
     
        // null marker to represent end of current level
        q.Enqueue(null);
     
        // Do Level order of tree using NULL markers
        while (q.Count!=0)
        {
            Node p = q.Peek();
            q.Dequeue();
            if (p != null)
            {
     
                // next element in queue represents next
                // node at current Level
                p.nextRight = q.Peek();
     
                // push left and right children of current
                // node
                if (p.left != null)
                    q.Enqueue(p.left);
                if (p.right != null)
                    q.Enqueue(p.right);
            }
             
            // if queue is not empty, push NULL to mark
            // nodes at this level are visited
            else if (q.Count!=0)
                q.Enqueue(null);
        }
    }
     
    /* Driver code*/
    public static void Main()
    {
     
        /* Constructed binary tree is
                10
                / \
            8 2
            /     \
        3     90
        */
        Node root = new Node(10);
        root.left = new Node(8);
        root.right = new Node(2);
        root.left.left = new Node(3);
        root.right.right = new Node(90);
     
        // Populates nextRight pointer in all nodes
        connect(root);
     
        // Let us check the values of nextRight pointers
        Console.WriteLine("Following are populated nextRight pointers in \n" +
    "the tree (-1 is printed if there is no nextRight)");
        Console.WriteLine("nextRight of "+ root.data +" is "+
        ((root.nextRight != null) ? root.nextRight.data : -1));
        Console.WriteLine("nextRight of "+ root.left.data+" is "+
        ((root.left.nextRight != null) ? root.left.nextRight.data : -1));
        Console.WriteLine("nextRight of "+ root.right.data+" is "+
        ((root.right.nextRight != null) ? root.right.nextRight.data : -1));
        Console.WriteLine("nextRight of "+ root.left.left.data+" is "+
        ((root.left.left.nextRight != null) ? root.left.left.nextRight.data : -1));
        Console.WriteLine("nextRight of "+ root.right.right.data+" is "+
        ((root.right.right.nextRight != null) ? root.right.right.nextRight.data : -1));
    }
}
 
/* This code is contributed by Rajput-Ji*/

Javascript

<script>
    // Connect nodes at same level using level order traversal.
     
    // A Binary Tree Node
    class Node
    {
        constructor(data, nextRight) {
           this.left = null;
           this.right = null;
           this.data = data;
           this.nextRight = nextRight;
        }
    }
     
    // Sets nextRight of all nodes of a tree
    function connect(root)
    {
        let q = [];
        q.push(root);
        
        // null marker to represent end of current level
        q.push(null);
        
        // Do Level order of tree using NULL markers
        while (q.length > 0) {
            let p = q[0];
            q.shift();
            if (p != null) {
        
                // next element in queue represents next
                // node at current Level
                p.nextRight = q[0];
        
                // push left and right children of current
                // node
                if (p.left != null)
                    q.push(p.left);
                if (p.right != null)
                    q.push(p.right);
            }
               
            // if queue is not empty, push NULL to mark
            // nodes at this level are visited
            else if (q.length > 0)
                q.push(null);
        }
    }
     
    /* Constructed binary tree is
                  10
                /   \
              8      2
            /         \
          3            90
        */
        let root = new Node(10);
        root.left = new Node(8);
        root.right = new Node(2);
        root.left.left = new Node(3);
        root.right.right = new Node(90);
        
        // Populates nextRight pointer in all nodes
        connect(root);
        
        // Let us check the values of nextRight pointers
        document.write("Following are populated nextRight pointers in " + "</br>" +
      "the tree (-1 is printed if there is no nextRight)" + "</br>");
        document.write("nextRight of "+ root.data +" is "+
        ((root.nextRight != null) ? root.nextRight.data : -1) + "</br>");
        document.write("nextRight of "+ root.left.data+" is "+
        ((root.left.nextRight != null) ? root.left.nextRight.data : -1) + "</br>");
        document.write("nextRight of "+ root.right.data+" is "+
        ((root.right.nextRight != null) ? root.right.nextRight.data : -1) + "</br>");
        document.write("nextRight of "+  root.left.left.data+" is "+
        ((root.left.left.nextRight != null) ? root.left.left.nextRight.data : -1) + "</br>");
        document.write("nextRight of "+  root.right.right.data+" is "+
        ((root.right.right.nextRight != null) ? root.right.right.nextRight.data : -1) + "</br>");
 
// This code is contributed by divyesh072019.
</script>
Producción

Following are populated nextRight pointers in 
the tree (-1 is printed if there is no nextRight) 
nextRight of 10 is -1 
nextRight of 8 is 2 
nextRight of 2 is -1 
nextRight of 3 is 90 
nextRight of 90 is -1 

Complejidad de tiempo: O(n) donde n es el número de Nodes
Espacio auxiliar: O(n) para cola 

Implementación alternativa: 

También podemos seguir la implementación discutida en Travesía del orden de nivel de impresión línea por línea | conjunto 1 . Seguimos conectando Nodes del mismo nivel haciendo un seguimiento del Node visitado anteriormente del mismo nivel. 

Implementación: https://ide.geeksforgeeks.org/gV1Oc2

Gracias a Akilan Sengottaiyan por sugerir esta implementación alternativa.

Este artículo es una contribución de Abhishek Rajput . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks. 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *