Construya un árbol binario completo a partir de su representación de lista enlazada

Dada la representación de lista enlazada del árbol binario completo, construya el árbol binario. Un árbol binario completo se puede representar en una array en el siguiente enfoque.
Si el Node raíz se almacena en el índice i, sus hijos izquierdo y derecho se almacenan en los índices 2*i+1, 2*i+2 respectivamente. 
Supongamos que el árbol está representado por una lista enlazada de la misma manera, ¿cómo convertimos esto en una representación enlazada normal del árbol binario donde cada Node tiene datos, punteros izquierdo y derecho? En la representación de lista enlazada, no podemos acceder directamente a los hijos del Node actual a menos que atravesemos la lista.
 

LinkedListToBST

C++

// C++ program to create a Complete Binary tree from its Linked List
// Representation
#include <iostream>
#include <string>
#include <queue>
using namespace std;
  
// Linked list node
struct ListNode
{
    int data;
    ListNode* next;
};
  
// Binary tree node structure
struct BinaryTreeNode
{
    int data;
    BinaryTreeNode *left, *right;
};
  
// Function to insert a node at the beginning of the Linked List
void push(struct ListNode** head_ref, int new_data)
{
    // allocate node and assign data
    struct ListNode* new_node = new ListNode;
    new_node->data = new_data;
  
    // link the old list off the new node
    new_node->next = (*head_ref);
  
    // move the head to point to the new node
    (*head_ref)    = new_node;
}
  
// method to create a new binary tree node from the given data
BinaryTreeNode* newBinaryTreeNode(int data)
{
    BinaryTreeNode *temp = new BinaryTreeNode;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
// converts a given linked list representing a complete binary tree into the
// linked representation of binary tree.
void convertList2Binary(ListNode *head, BinaryTreeNode* &root)
{
    // queue to store the parent nodes
    queue<BinaryTreeNode *> q;
  
    // Base Case
    if (head == NULL)
    {
        root = NULL; // Note that root is passed by reference
        return;
    }
  
    // 1.) The first node is always the root node, and add it to the queue
    root = newBinaryTreeNode(head->data);
    q.push(root);
  
    // advance the pointer to the next node
    head = head->next;
  
    // until the end of linked list is reached, do the following steps
    while (head)
    {
        // 2.a) take the parent node from the q and remove it from q
        BinaryTreeNode* parent = q.front();
        q.pop();
  
        // 2.c) take next two nodes from the linked list. We will add
        // them as children of the current parent node in step 2.b. Push them
        // into the queue so that they will be parents to the future nodes
        BinaryTreeNode *leftChild = NULL, *rightChild = NULL;
        leftChild = newBinaryTreeNode(head->data);
        q.push(leftChild);
        head = head->next;
        if (head)
        {
            rightChild = newBinaryTreeNode(head->data);
            q.push(rightChild);
            head = head->next;
        }
  
        // 2.b) assign the left and right children of parent
        parent->left = leftChild;
        parent->right = rightChild;
        
           
    }
}
  
// Utility function to traverse the binary tree after conversion
void inorderTraversal(BinaryTreeNode* root)
{
    if (root)
    {
        inorderTraversal( root->left );
        cout << root->data << " ";
        inorderTraversal( root->right );
    }
}
  
// Driver program to test above functions
int main()
{
    // create a linked list shown in above diagram
    struct ListNode* head = NULL;
    push(&head, 36);  /* Last node of Linked List */
    push(&head, 30);
    push(&head, 25);
    push(&head, 15);
    push(&head, 12);
    push(&head, 10); /* First node of Linked List */
  
    BinaryTreeNode *root;
    convertList2Binary(head, root);
  
    cout << "Inorder Traversal of the constructed Binary Tree is: \n";
    inorderTraversal(root);
    return 0;
}

Java

// Java program to create complete Binary Tree from its Linked List
// representation
   
// importing necessary classes
import java.util.*;
   
// A linked list node
class ListNode 
{
    int data;
    ListNode next;
    ListNode(int d)
    {
        data = d;
        next = null;
    }
}
   
// A binary tree node
class BinaryTreeNode 
{
    int data;
    BinaryTreeNode left, right = null;
    BinaryTreeNode(int data)
    {
        this.data = data;
        left = right = null;
    }
}
   
class BinaryTree 
{
    ListNode head;
    BinaryTreeNode root;
   
    // Function to insert a node at the beginning of
    // the Linked List
    void push(int new_data) 
    {
        // allocate node and assign data
        ListNode new_node = new ListNode(new_data);
   
        // link the old list off the new node
        new_node.next = head;
   
        // move the head to point to the new node
        head = new_node;
    }
   
    // converts a given linked list representing a 
    // complete binary tree into the linked 
    // representation of binary tree.
    BinaryTreeNode convertList2Binary(BinaryTreeNode node) 
    {
        // queue to store the parent nodes
        Queue<BinaryTreeNode> q = 
                       new LinkedList<BinaryTreeNode>();
   
        // Base Case
        if (head == null) 
        {
            node = null; 
            return null;
        }
   
        // 1.) The first node is always the root node, and
        //     add it to the queue
        node = new BinaryTreeNode(head.data);
        q.add(node);
   
        // advance the pointer to the next node
        head = head.next;
   
        // until the end of linked list is reached, do the
        // following steps
        while (head != null) 
        {
            // 2.a) take the parent node from the q and 
            //      remove it from q
            BinaryTreeNode parent = q.peek();
               
            // 2.c) take next two nodes from the linked list.
            // We will add them as children of the current 
            // parent node in step 2.b. Push them into the
            // queue so that they will be parents to the 
            // future nodes
            BinaryTreeNode leftChild = null, rightChild = null;
            leftChild = new BinaryTreeNode(head.data);
            q.add(leftChild);
            head = head.next;
            if (head != null) 
            {
                rightChild = new BinaryTreeNode(head.data);
                q.add(rightChild);
                head = head.next;
            }
   
            // 2.b) assign the left and right children of
            //      parent
            parent.left = leftChild;
            parent.right = rightChild;
            
              //remove current level node
              q.poll();
        }
           
        return node;
    }
   
    // Utility function to traverse the binary tree 
    // after conversion
    void inorderTraversal(BinaryTreeNode node) 
    {
        if (node != null) 
        {
            inorderTraversal(node.left);
            System.out.print(node.data + " ");
            inorderTraversal(node.right);
        }
    }
   
    // Driver program to test above functions
    public static void main(String[] args) 
    {
        BinaryTree tree = new BinaryTree();
        tree.push(36); /* Last node of Linked List */
        tree.push(30);
        tree.push(25);
        tree.push(15);
        tree.push(12);
        tree.push(10); /* First node of Linked List */
        BinaryTreeNode node = tree.convertList2Binary(tree.root);
   
        System.out.println("Inorder Traversal of the"+
                        " constructed Binary Tree is:");
        tree.inorderTraversal(node);
    }
}
// This code has been contributed by Mayank Jaiswal

Python3

# Python program to create a Complete Binary Tree from
# its linked list representation
  
# Linked List node
class ListNode:
  
        # Constructor to create a new node
        def __init__(self, data):
            self.data = data
            self.next = None
  
# Binary Tree Node structure
class BinaryTreeNode:
  
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
  
# Class to convert the linked list to Binary Tree
class Conversion:
  
    # Constructor for storing head of linked list
    # and root for the Binary Tree
    def __init__(self, data = None):
        self.head = None
        self.root = None
  
    def push(self, new_data):
  
        # Creating a new linked list node and storing data
        new_node = ListNode(new_data)
  
        # Make next of new node as head
        new_node.next = self.head
  
        # Move the head to point to new node
        self.head = new_node
  
    def convertList2Binary(self):
  
        # Queue to store the parent nodes
        q = []
  
        # Base Case
        if self.head is None:
            self.root = None
            return 
  
        # 1.) The first node is always the root node,
        # and add it to the queue
        self.root = BinaryTreeNode(self.head.data)
        q.append(self.root)
  
        # Advance the pointer to the next node
        self.head = self.head.next
  
        # Until the end of linked list is reached, do:
        while(self.head):
  
            # 2.a) Take the parent node from the q and
            # and remove it from q
            parent = q.pop(0) # Front of queue
  
            # 2.c) Take next two nodes from the linked list.
            # We will add them as children of the current
            # parent node in step 2.b.
            # Push them into the queue so that they will be
            # parent to the future node
            leftChild= None
            rightChild = None
  
            leftChild = BinaryTreeNode(self.head.data)
            q.append(leftChild)
            self.head = self.head.next
            if(self.head):
                rightChild = BinaryTreeNode(self.head.data)
                q.append(rightChild)
                self.head = self.head.next
  
            #2.b) Assign the left and right children of parent
            parent.left = leftChild
            parent.right = rightChild
  
    def inorderTraversal(self, root):
        if(root):
            self.inorderTraversal(root.left)
            print (root.data,end=" ")
            self.inorderTraversal(root.right)
  
# Driver Program to test above function
  
# Object of conversion class
conv = Conversion()
conv.push(36)
conv.push(30)
conv.push(25)
conv.push(15)
conv.push(12)
conv.push(10)
  
conv.convertList2Binary()
  
print ("Inorder Traversal of the constructed Binary Tree is:")
conv.inorderTraversal(conv.root)
  
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)

C#

// C# program to create complete 
// Binary Tree from its Linked List
// representation
  
// importing necessary classes
using System;
using System.Collections.Generic; 
  
// A linked list node
public class ListNode 
{
    public int data;
    public ListNode next;
    public ListNode(int d)
    {
        data = d;
        next = null;
    }
}
  
// A binary tree node
public class BinaryTreeNode 
{
    public int data;
    public BinaryTreeNode left, right = null;
    public BinaryTreeNode(int data)
    {
        this.data = data;
        left = right = null;
    }
}
  
public class BinaryTree 
{
    ListNode head;
    BinaryTreeNode root;
  
    // Function to insert a node at 
    // the beginning of the Linked List
    void push(int new_data) 
    {
        // allocate node and assign data
        ListNode new_node = new ListNode(new_data);
  
        // link the old list off the new node
        new_node.next = head;
  
        // move the head to point to the new node
        head = new_node;
    }
  
    // converts a given linked list representing a 
    // complete binary tree into the linked 
    // representation of binary tree.
    BinaryTreeNode convertList2Binary(BinaryTreeNode node) 
    {
        // queue to store the parent nodes
        Queue<BinaryTreeNode> q = 
                    new Queue<BinaryTreeNode>();
  
        // Base Case
        if (head == null) 
        {
            node = null; 
            return null;
        }
  
        // 1.) The first node is always the root node, and
        //     add it to the queue
        node = new BinaryTreeNode(head.data);
        q.Enqueue(node);
  
        // advance the pointer to the next node
        head = head.next;
  
        // until the end of linked list is reached,
        //  do the following steps
        while (head != null) 
        {
            // 2.a) take the parent node from the q and 
            //     remove it from q
            BinaryTreeNode parent = q.Peek();
            BinaryTreeNode pp = q.Dequeue();
              
            // 2.c) take next two nodes from the linked list.
            // We will add them as children of the current 
            // parent node in step 2.b. Push them into the
            // queue so that they will be parents to the 
            // future nodes
            BinaryTreeNode leftChild = null, rightChild = null;
              
            leftChild = new BinaryTreeNode(head.data);
            q.Enqueue(leftChild);
            head = head.next;
              
            if (head != null) 
            {
                rightChild = new BinaryTreeNode(head.data);
                q.Enqueue(rightChild);
                head = head.next;
            }
  
            // 2.b) assign the left and right children of
            //     parent
            parent.left = leftChild;
            parent.right = rightChild;
        }
          
        return node;
    }
  
    // Utility function to traverse the binary tree 
    // after conversion
    void inorderTraversal(BinaryTreeNode node) 
    {
        if (node != null) 
        {
            inorderTraversal(node.left);
            Console.Write(node.data + " ");
            inorderTraversal(node.right);
        }
    }
  
    // Driver code
    public static void Main() 
    {
        BinaryTree tree = new BinaryTree();
          
        /* Last node of Linked List */
        tree.push(36); 
        tree.push(30);
        tree.push(25);
        tree.push(15);
        tree.push(12);
          
        /* First node of Linked List */
        tree.push(10); 
        BinaryTreeNode node = tree.convertList2Binary(tree.root);
  
        Console.WriteLine("Inorder Traversal of the"+
                        " constructed Binary Tree is:");
        tree.inorderTraversal(node);
    }
}
  
/* This code is contributed PrinciRaj1992 */

Javascript

<script>
  
      // JavaScript program to create complete
      // Binary Tree from its Linked List
      // representation
  
      // importing necessary classes
      // A linked list node
      class ListNode {
        constructor(d) {
          this.data = d;
          this.next = null;
        }
      }
  
      // A binary tree node
      class BinaryTreeNode {
        constructor(data) {
          this.data = data;
          this.left = null;
          this.right = null;
        }
      }
  
      class BinaryTree {
        constructor() {
          this.head = null;
          this.root = null;
        }
  
        // Function to insert a node at
        // the beginning of the Linked List
        push(new_data) {
          // allocate node and assign data
          var new_node = new ListNode(new_data);
  
          // link the old list off the new node
          new_node.next = this.head;
  
          // move the head to point to the new node
          this.head = new_node;
        }
  
        // converts a given linked list representing a
        // complete binary tree into the linked
        // representation of binary tree.
        convertList2Binary(node) {
          // queue to store the parent nodes
          var q = [];
  
          // Base Case
          if (this.head == null) {
            node = null;
            return null;
          }
  
          // 1.) The first node is always the root node, and
          //     add it to the queue
          node = new BinaryTreeNode(this.head.data);
          q.push(node);
  
          // advance the pointer to the next node
          this.head = this.head.next;
  
          // until the end of linked list is reached,
          //  do the following steps
          while (this.head != null) {
            // 2.a) take the parent node from the q and
            //     remove it from q
  
            var parent = q.shift();
  
            // 2.c) take next two nodes from the linked list.
            // We will add them as children of the current
            // parent node in step 2.b. Push them into the
            // queue so that they will be parents to the
            // future nodes
            var leftChild = null,
              rightChild = null;
  
            leftChild = new BinaryTreeNode(this.head.data);
            q.push(leftChild);
            this.head = this.head.next;
  
            if (this.head != null) {
              rightChild = new BinaryTreeNode(this.head.data);
              q.push(rightChild);
              this.head = this.head.next;
            }
  
            // 2.b) assign the left and right children of
            //     parent
            parent.left = leftChild;
            parent.right = rightChild;
          }
  
          return node;
        }
  
        // Utility function to traverse the binary tree
        // after conversion
        inorderTraversal(node) {
          if (node != null) {
            this.inorderTraversal(node.left);
            document.write(node.data + " ");
            this.inorderTraversal(node.right);
          }
        }
      }
  
      // Driver code
      var tree = new BinaryTree();
  
      /* Last node of Linked List */
      tree.push(36);
      tree.push(30);
      tree.push(25);
      tree.push(15);
      tree.push(12);
  
      /* First node of Linked List */
      tree.push(10);
      var node = tree.convertList2Binary(tree.root);
  
      document.write(
     "Inorder Traversal of the" + " constructed Binary Tree is:<br>"
      );
      tree.inorderTraversal(node);
  
</script>

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *