Consulta de rango mínimo (descomposición de raíz cuadrada y tabla dispersa)

Tenemos una array arr[0 . . . n-1]. Deberíamos poder encontrar de manera eficiente el valor mínimo desde el índice L (inicio de consulta) hasta R (final de consulta) donde 0 <= L <= R <= n-1 . Considere una situación en la que hay muchas consultas de rango. 
Ejemplo: 

Input:  arr[]   = {7, 2, 3, 0, 5, 10, 3, 12, 18};
        query[] = [0, 4], [4, 7], [7, 8]

Output: Minimum of [0, 4] is 0
        Minimum of [4, 7] is 3
        Minimum of [7, 8] is 12

Una solución simple es ejecutar un ciclo de L a R y encontrar el elemento mínimo en el rango dado. Esta solución tarda O (n) tiempo para consultar en el peor de los casos.
Otro enfoque es utilizar el árbol de segmentos . Con el árbol de segmentos, el tiempo de preprocesamiento es O(n) y el tiempo para la consulta mínima de rango es O(Logn) . El espacio adicional requerido es O(n) para almacenar el árbol de segmentos. El árbol de segmentos permite actualizaciones también en tiempo O(Log n)

¿Podemos hacerlo mejor si sabemos que la array es estática?

¿Cómo optimizar el tiempo de consulta cuando no hay operaciones de actualización y hay muchas consultas mínimas de rango?
A continuación se presentan diferentes métodos.

Método 1 (Solución simple) 
Una solución simple es crear una búsqueda de array 2D[][] donde una entrada de búsqueda[i][j] almacena el valor mínimo en el rango arr[i..j]. El mínimo de un rango dado ahora se puede calcular en tiempo O(1).
 

rmqsimple

C++

// C++ program to do range
// minimum query in O(1) time with
// O(n*n) extra space and O(n*n)
// preprocessing time.
#include <bits/stdc++.h>
using namespace std;
#define MAX 500
 
// lookup[i][j] is going to store
// index of minimum value in
// arr[i..j]
int lookup[MAX][MAX];
 
// Structure to represent a query range
struct Query {
    int L, R;
};
 
// Fills lookup array lookup[n][n]
// for all possible values
// of query ranges
void preprocess(int arr[], int n)
{
    // Initialize lookup[][] for the
    // intervals with length 1
    for (int i = 0; i < n; i++)
        lookup[i][i] = i;
 
    // Fill rest of the entries in bottom up manner
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++)
 
            // To find minimum of [0,4],
            // we compare minimum
            // of arr[lookup[0][3]] with arr[4].
            if (arr[lookup[i][j - 1]] < arr[j])
                lookup[i][j] = lookup[i][j - 1];
            else
                lookup[i][j] = j;
    }
}
 
// Prints minimum of given m
// query ranges in arr[0..n-1]
void RMQ(int arr[], int n, Query q[], int m)
{
    // Fill lookup table for
    // all possible input queries
    preprocess(arr, n);
 
    // One by one compute sum of all queries
    for (int i = 0; i < m; i++)
    {
        // Left and right boundaries
        // of current range
        int L = q[i].L, R = q[i].R;
 
        // Print sum of current query range
        cout << "Minimum of [" << L
             << ", " << R << "] is "
             << arr[lookup[L][R]] << endl;
    }
}
 
// Driver code
int main()
{
    int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
    int n = sizeof(a) / sizeof(a[0]);
    Query q[] = { { 0, 4 }, { 4, 7 }, { 7, 8 } };
    int m = sizeof(q) / sizeof(q[0]);
    RMQ(a, n, q, m);
    return 0;
}

Java

// Java program to do range minimum query
// in O(1) time with O(n*n) extra space
// and O(n*n) preprocessing time.
import java.util.*;
 
class GFG {
    static int MAX = 500;
 
    // lookup[i][j] is going to store index of
    // minimum value in arr[i..j]
    static int[][] lookup = new int[MAX][MAX];
 
    // Structure to represent a query range
    static class Query {
        int L, R;
 
        public Query(int L, int R)
        {
            this.L = L;
            this.R = R;
        }
    };
 
    // Fills lookup array lookup[n][n] for
    // all possible values of query ranges
    static void preprocess(int arr[], int n)
    {
        // Initialize lookup[][] for
        // the intervals with length 1
        for (int i = 0; i < n; i++)
            lookup[i][i] = i;
 
        // Fill rest of the entries in bottom up manner
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++)
 
                // To find minimum of [0,4],
                // we compare minimum of
                // arr[lookup[0][3]] with arr[4].
                if (arr[lookup[i][j - 1]] < arr[j])
                    lookup[i][j] = lookup[i][j - 1];
                else
                    lookup[i][j] = j;
        }
    }
 
    // Prints minimum of given m query
    // ranges in arr[0..n-1]
    static void RMQ(int arr[], int n, Query q[], int m)
    {
        // Fill lookup table for
        // all possible input queries
        preprocess(arr, n);
 
        // One by one compute sum of all queries
        for (int i = 0; i < m; i++) {
            // Left and right boundaries
            // of current range
            int L = q[i].L, R = q[i].R;
 
            // Print sum of current query range
            System.out.println("Minimum of [" + L + ", " + R
                               + "] is "
                               + arr[lookup[L][R]]);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.length;
        Query q[] = { new Query(0, 4), new Query(4, 7),
                      new Query(7, 8) };
        int m = q.length;
        RMQ(a, n, q, m);
    }
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 program to do range
# minimum query in O(1) time with
# O(n*n) extra space and O(n*n)
# preprocessing time.
MAX = 500
  
# lookup[i][j] is going to store
# index of minimum value in
# arr[i..j]
lookup = [[0 for j in range(MAX)]
             for i in range(MAX)]
  
# Structure to represent
# a query range
class Query:
     
    def __init__(self, L, R):
         
        self.L = L
        self.R = R
  
# Fills lookup array lookup[n][n]
# for all possible values
# of query ranges
def preprocess(arr, n):
 
    # Initialize lookup[][] for the
    # intervals with length 1
    for i in range(n):
        lookup[i][i] = i;
  
    # Fill rest of the entries in
    # bottom up manner
    for i in range(n):
        for j in range(i + 1, n):
  
            # To find minimum of [0,4],
            # we compare minimum
            # of arr[lookup[0][3]] with arr[4].
            if (arr[lookup[i][j - 1]] < arr[j]):
                lookup[i][j] = lookup[i][j - 1];
            else:
                lookup[i][j] = j;   
  
# Prints minimum of given m
# query ranges in arr[0..n-1]
def RMQ(arr, n, q, m):
 
    # Fill lookup table for
    # all possible input queries
    preprocess(arr, n);
  
    # One by one compute sum of
    # all queries
    for i in range(m):
 
        # Left and right boundaries
        # of current range
        L = q[i].L
        R = q[i].R;
  
        # Print sum of current query range
        print("Minimum of [" + str(L) + ", " +
               str(R) + "] is " +
               str(arr[lookup[L][R]]))
 
# Driver code
if __name__ == "__main__":
     
    a = [7, 2, 3, 0, 5,
         10, 3, 12, 18]
    n = len(a)   
    q = [Query(0, 4),
         Query(4, 7),
         Query(7, 8)]   
    m = len(q)   
    RMQ(a, n, q, m);
  
# This code is contributed by Rutvik_56

C#

// C# program to do range minimum query
// in O(1) time with O(n*n) extra space
// and O(n*n) preprocessing time.
using System;
 
class GFG {
    static int MAX = 500;
 
    // lookup[i][j] is going to store index of
    // minimum value in arr[i..j]
    static int[, ] lookup = new int[MAX, MAX];
 
    // Structure to represent a query range
    public class Query {
        public int L, R;
 
        public Query(int L, int R)
        {
            this.L = L;
            this.R = R;
        }
    };
 
    // Fills lookup array lookup[n][n] for
    // all possible values of query ranges
    static void preprocess(int[] arr, int n)
    {
        // Initialize lookup[][] for
        // the intervals with length 1
        for (int i = 0; i < n; i++)
            lookup[i, i] = i;
 
        // Fill rest of the entries in bottom up manner
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
 
                // To find minimum of [0,4],
                // we compare minimum of
                // arr[lookup[0][3]] with arr[4].
                if (arr[lookup[i, j - 1]] < arr[j])
                    lookup[i, j] = lookup[i, j - 1];
                else
                    lookup[i, j] = j;
        }
    }
 
    // Prints minimum of given m query
    // ranges in arr[0..n-1]
    static void RMQ(int[] arr, int n, Query[] q, int m)
    {
        // Fill lookup table for
        // all possible input queries
        preprocess(arr, n);
 
        // One by one compute sum of all queries
        for (int i = 0; i < m; i++) {
            // Left and right boundaries
            // of current range
            int L = q[i].L, R = q[i].R;
 
            // Print sum of current query range
            Console.WriteLine("Minimum of [" + L + ", " + R
                              + "] is "
                              + arr[lookup[L, R]]);
        }
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[] a = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.Length;
        Query[] q = { new Query(0, 4), new Query(4, 7),
                      new Query(7, 8) };
        int m = q.Length;
        RMQ(a, n, q, m);
    }
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
// Javascript program to do range minimum query
// in O(1) time with O(n*n) extra space
// and O(n*n) preprocessing time
let MAX = 500;
 
// lookup[i][j] is going to store index of
// minimum value in arr[i..j]
let lookup = new Array(MAX);
for(let i = 0; i < MAX; i++)
{
    lookup[i] = new Array(MAX);
    for(let j = 0; j < MAX; j++)
        lookup[i][j] = 0;
}
 
// Structure to represent a query range
class Query
{
    constructor(L, R)
    {
        this.L = L;
            this.R = R;
    }
}
 
 // Fills lookup array lookup[n][n] for
    // all possible values of query ranges
function preprocess(arr, n)
{
 
    // Initialize lookup[][] for
        // the intervals with length 1
        for (let i = 0; i < n; i++)
            lookup[i][i] = i;
  
        // Fill rest of the entries in bottom up manner
        for (let i = 0; i < n; i++) {
            for (let j = i + 1; j < n; j++)
  
                // To find minimum of [0,4],
                // we compare minimum of
                // arr[lookup[0][3]] with arr[4].
                if (arr[lookup[i][j - 1]] < arr[j])
                    lookup[i][j] = lookup[i][j - 1];
                else
                    lookup[i][j] = j;
        }
}
 
// Prints minimum of given m query
// ranges in arr[0..n-1]
function RMQ(arr,n,q,m)
{
    // Fill lookup table for
        // all possible input queries
        preprocess(arr, n);
  
        // One by one compute sum of all queries
        for (let i = 0; i < m; i++)
        {
         
            // Left and right boundaries
            // of current range
            let L = q[i].L, R = q[i].R;
  
            // Print sum of current query range
            document.write("Minimum of [" + L + ", " + R
                               + "] is "
                               + arr[lookup[L][R]]+"<br>");
        }
}
 
// Driver Code
let a=[7, 2, 3, 0, 5, 10, 3, 12, 18];
let n = a.length;
let q = [ new Query(0, 4), new Query(4, 7),
new Query(7, 8) ];
let m = q.length;
RMQ(a, n, q, m);
 
// This code is contributed by avanitrachhadiya2155
</script>

Producción: 

Minimum of [0, 4] is 0
Minimum of [4, 7] is 3
Minimum of [7, 8] is 12

Este enfoque admite consultas en O(1) , pero el preprocesamiento lleva tiempo O(n 2 ) . Además, este enfoque necesita O(n 2 ) espacio adicional que puede volverse enorme para arrays de entrada grandes.

Método 2 (descomposición de raíz cuadrada) 
Podemos usar descomposiciones de raíz cuadrada para reducir el espacio requerido en el método anterior.
Preprocesamiento: 
1) Divida el rango [0, n-1] en diferentes bloques de √n cada uno. 
2) Calcule el mínimo de cada bloque de tamaño √n y almacene los resultados.
El preprocesamiento toma O(√n * √n) = O(n) tiempo y O(√n) espacio.
 

rmq3

Consulta: 
1) Para consultar un rango [L, R], tomamos un mínimo de todos los bloques que se encuentran en este rango. Para los bloques de las esquinas izquierda y derecha que pueden superponerse parcialmente con el rango dado, los escaneamos linealmente para encontrar el mínimo. 
La complejidad temporal de la consulta es O(√n) . Tenga en cuenta que tenemos un mínimo del bloque medio directamente accesible y puede haber como máximo O(√n) bloques medios. Puede haber como máximo dos bloques de esquina que tengamos que escanear, por lo que es posible que tengamos que escanear 2*O(√n) elementos de bloques de esquina. Por lo tanto, la complejidad temporal total es O(√n) .
Consulte la técnica de descomposición Sqrt (o raíz cuadrada) | Conjunto 1 (Introducción) para más detalles.

Método 3 (algoritmo de tabla dispersa) 
La solución anterior requiere solo O(√n) espacio pero toma O(√n) tiempo para consultar. El método de tabla dispersa admite el tiempo de consulta O(1) con espacio adicional O(n Log n) .
La idea es precalcular un mínimo de todos los subarreglos de tamaño 2 j donde j varía de 0 a Log n . Al igual que el método 1, hacemos una tabla de búsqueda. Aquí lookup[i][j] contiene un rango mínimo a partir de i y de tamaño 2 j . Por ejemplo, lookup[0][3] contiene un mínimo de rango [0, 7] (comenzando con 0 y de tamaño 2 3 )

Preprocesamiento: 
¿Cómo llenar esta tabla de búsqueda? La idea es simple, llenar de abajo hacia arriba utilizando valores previamente calculados. 
Por ejemplo, para encontrar un mínimo de rango [0, 7], podemos usar un mínimo de los dos siguientes. 
a) Mínimo de rango [0, 3] 
b) Mínimo de rango [4, 7]
Basado en el ejemplo anterior, a continuación se muestra la fórmula, 

// If arr[lookup[0][2]] <=  arr[lookup[4][2]], 
// then lookup[0][3] = lookup[0][2]
If arr[lookup[i][j-1]] <= arr[lookup[i+2j-1][j-1]]
   lookup[i][j] = lookup[i][j-1]

// If arr[lookup[0][2]] >  arr[lookup[4][2]], 
// then lookup[0][3] = lookup[4][2]
Else 
   lookup[i][j] = lookup[i+2j-1][j-1] 

rmqsparsetable

Consulta: 
Para cualquier rango arbitrario [l, R], necesitamos usar rangos que estén en potencias de 2. La idea es usar la potencia de 2 más cercana. Siempre necesitamos hacer como máximo una comparación (comparar un mínimo de dos rangos que son potencias de 2). Un rango comienza con L y termina con «L + potencia de 2 más cercana». El otro rango termina en R y comienza con «R – misma potencia más cercana de 2 + 1». Por ejemplo, si el rango dado es (2, 10), comparamos un mínimo de dos rangos (2, 9) y (3, 10). 
Basado en el ejemplo anterior, a continuación se muestra la fórmula, 

// For (2,10), j = floor(Log2(10-2+1)) = 3
j = floor(Log(R-L+1))

// If arr[lookup[0][3]] <=  arr[lookup[3][3]], 
// then RMQ(2,10) = lookup[0][3]
If arr[lookup[L][j]] <= arr[lookup[R-(int)pow(2,j)+1][j]]
   RMQ(L, R) = lookup[L][j]

// If arr[lookup[0][3]] >  arr[lookup[3][3]], 
// then RMQ(2,10) = lookup[3][3]
Else 
   RMQ(L, R) = lookup[R-(int)pow(2,j)+1][j]

Como solo hacemos una comparación, la complejidad temporal de la consulta es O(1).

A continuación se muestra la implementación de la idea anterior. 

C++

// C++ program to do range minimum
// query in O(1) time with
// O(n Log n) extra space and
// O(n Log n) preprocessing time
#include <bits/stdc++.h>
using namespace std;
#define MAX 500
 
// lookup[i][j] is going to
// store index of minimum value in
// arr[i..j]. Ideally lookup
// table size should not be fixed
// and should be determined using
// n Log n. It is kept
// constant to keep code simple.
int lookup[MAX][MAX];
 
// Structure to represent a query range
struct Query {
    int L, R;
};
 
// Fills lookup array
// lookup[][] in bottom up manner.
void preprocess(int arr[], int n)
{
    // Initialize M for the
    // intervals with length 1
    for (int i = 0; i < n; i++)
        lookup[i][0] = i;
 
    // Compute values from smaller
    // to bigger intervals
    for (int j = 1; (1 << j) <= n; j++)
    {
        // Compute minimum value for
        // all intervals with size
        // 2^j
        for (int i = 0; (i + (1 << j) - 1) < n; i++)
        {
            // For arr[2][10], we
            // compare arr[lookup[0][3]]
            // and arr[lookup[3][3]]
            if (arr[lookup[i][j - 1]]
                < arr[lookup[i + (1 << (j - 1))][j - 1]])
                lookup[i][j] = lookup[i][j - 1];
            else
                lookup[i][j]
                    = lookup[i + (1 << (j - 1))][j - 1];
        }
    }
}
 
// Returns minimum of arr[L..R]
int query(int arr[], int L, int R)
{
    // For [2,10], j = 3
    int j = (int)log2(R - L + 1);
 
    // For [2,10], we compare arr[lookup[0][3]] and
    // arr[lookup[3][3]],
    if (arr[lookup[L][j]]
        <= arr[lookup[R - (1 << j) + 1][j]])
        return arr[lookup[L][j]];
 
    else
        return arr[lookup[R - (1 << j) + 1][j]];
}
 
// Prints minimum of given
// m query ranges in arr[0..n-1]
void RMQ(int arr[], int n, Query q[], int m)
{
    // Fills table lookup[n][Log n]
    preprocess(arr, n);
 
    // One by one compute sum of all queries
    for (int i = 0; i < m; i++)
    {
        // Left and right boundaries
        // of current range
        int L = q[i].L, R = q[i].R;
 
        // Print sum of current query range
        cout << "Minimum of [" << L << ", "
             << R << "] is "
             << query(arr, L, R) << endl;
    }
}
 
// Driver code
int main()
{
    int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
    int n = sizeof(a) / sizeof(a[0]);
    Query q[] = { { 0, 4 }, { 4, 7 }, { 7, 8 } };
    int m = sizeof(q) / sizeof(q[0]);
    RMQ(a, n, q, m);
    return 0;
}

Java

// Java program to do range minimum query
// in O(1) time with O(n Log n) extra space
// and O(n Log n) preprocessing time
import java.util.*;
 
class GFG {
 
    static int MAX = 500;
 
    // lookup[i][j] is going to store index
    // of minimum value in arr[i..j].
    // Ideally lookup table size should not be fixed
    // and should be determined using n Log n.
    // It is kept constant to keep code simple.
    static int[][] lookup = new int[MAX][MAX];
 
    // Structure to represent a query range
    static class Query {
        int L, R;
 
        public Query(int L, int R)
        {
            this.L = L;
            this.R = R;
        }
    };
 
    // Fills lookup array lookup[][]
    // in bottom up manner.
    static void preprocess(int arr[], int n)
    {
        // Initialize M for the intervals
        // with length 1
        for (int i = 0; i < n; i++)
            lookup[i][0] = i;
 
        // Compute values from smaller
        // to bigger intervals
        for (int j = 1; (1 << j) <= n; j++)
        {
            // Compute minimum value for
            // all intervals with size 2^j
            for (int i = 0;
                 (i + (1 << j) - 1) < n;
                 i++)
            {
                // For arr[2][10], we compare
                // arr[lookup[0][3]]
                // and arr[lookup[3][3]]
                if (arr[lookup[i][j - 1]]
                    < arr[lookup[i + (1 << (j - 1))]
                                [j - 1]])
                    lookup[i][j] = lookup[i][j - 1];
                else
                    lookup[i][j]
                        = lookup[i + (1 << (j - 1))][j - 1];
            }
        }
    }
 
    // Returns minimum of arr[L..R]
    static int query(int arr[], int L, int R)
    {
        // For [2,10], j = 3
        int j = (int)Math.log(R - L + 1);
 
        // For [2,10], we compare
        // arr[lookup[0][3]]
        // and arr[lookup[3][3]],
        if (arr[lookup[L][j]]
            <= arr[lookup[R - (1 << j) + 1][j]])
            return arr[lookup[L][j]];
 
        else
            return arr[lookup[R - (1 << j) + 1][j]];
    }
 
    // Prints minimum of given m
    // query ranges in arr[0..n-1]
    static void RMQ(int arr[], int n,
                    Query q[], int m)
    {
        // Fills table lookup[n][Log n]
        preprocess(arr, n);
 
        // One by one compute sum of all queries
        for (int i = 0; i < m; i++)
        {
            // Left and right boundaries
            // of current range
            int L = q[i].L, R = q[i].R;
 
            // Print sum of current query range
            System.out.println("Minimum of ["
                                
                               + L + ", " + R
                               + "] is "
                               + query(arr, L, R));
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.length;
        Query q[] = { new Query(0, 4), new Query(4, 7),
                      new Query(7, 8) };
        int m = q.length;
        RMQ(a, n, q, m);
    }
}
 
// This code is contributed by Rajput-Ji

Python3

# Python3 program to do range minimum query
# in O(1) time with O(n Log n) extra space
# and O(n Log n) preprocessing time
from math import log2
 
MAX = 500
 
# lookup[i][j] is going to store index of
# minimum value in arr[i..j].
# Ideally lookup table size should
# not be fixed and should be determined
# using n Log n. It is kept constant
# to keep code simple.
lookup = [[0 for i in range(500)]
          for j in range(500)]
 
# Structure to represent a query range
 
 
class Query:
    def __init__(self, l, r):
        self.L = l
        self.R = r
 
# Fills lookup array lookup[][]
# in bottom up manner.
 
 
def preprocess(arr: list, n: int):
    global lookup
 
    # Initialize M for the
    # intervals with length 1
    for i in range(n):
        lookup[i][0] = i
 
    # Compute values from
    # smaller to bigger intervals
    j = 1
    while (1 << j) <= n:
 
        # Compute minimum value for
        # all intervals with size 2^j
        i = 0
        while i + (1 << j) - 1 < n:
 
            # For arr[2][10], we compare
            # arr[lookup[0][3]] and
            # arr[lookup[3][3]]
            if (arr[lookup[i][j - 1]] <
                    arr[lookup[i + (1 << (j - 1))][j - 1]]):
                lookup[i][j] = lookup[i][j - 1]
            else:
                lookup[i][j] = lookup[i +
                                      (1 << (j - 1))][j - 1]
 
            i += 1
        j += 1
 
# Returns minimum of arr[L..R]
 
 
def query(arr: list, L: int, R: int) -> int:
    global lookup
 
    # For [2,10], j = 3
    j = int(log2(R - L + 1))
 
    # For [2,10], we compare
    # arr[lookup[0][3]] and
    # arr[lookup[3][3]],
    if (arr[lookup[L][j]] <=
            arr[lookup[R - (1 << j) + 1][j]]):
        return arr[lookup[L][j]]
    else:
        return arr[lookup[R - (1 << j) + 1][j]]
 
# Prints minimum of given
# m query ranges in arr[0..n-1]
 
 
def RMQ(arr: list, n: int, q: list, m: int):
 
    # Fills table lookup[n][Log n]
    preprocess(arr, n)
 
    # One by one compute sum of all queries
    for i in range(m):
 
        # Left and right boundaries
        # of current range
        L = q[i].L
        R = q[i].R
 
        # Print sum of current query range
        print("Minimum of [%d, %d] is %d" %
              (L, R, query(arr, L, R)))
 
 
# Driver Code
if __name__ == "__main__":
    a = [7, 2, 3, 0, 5, 10, 3, 12, 18]
    n = len(a)
    q = [Query(0, 4), Query(4, 7),
         Query(7, 8)]
    m = len(q)
 
    RMQ(a, n, q, m)
 
# This code is contributed by
# sanjeev2552

C#

// C# program to do range minimum query
// in O(1) time with O(n Log n) extra space
// and O(n Log n) preprocessing time
using System;
 
class GFG {
 
    static int MAX = 500;
 
    // lookup[i,j] is going to store index
    // of minimum value in arr[i..j].
    // Ideally lookup table size should not be fixed
    // and should be determined using n Log n.
    // It is kept constant to keep code simple.
    static int[, ] lookup = new int[MAX, MAX];
 
    // Structure to represent a query range
    public class Query {
        public int L, R;
 
        public Query(int L, int R)
        {
            this.L = L;
            this.R = R;
        }
    };
 
    // Fills lookup array lookup[,]
    // in bottom up manner.
    static void preprocess(int[] arr, int n)
    {
        // Initialize M for the intervals
        // with length 1
        for (int i = 0; i < n; i++)
            lookup[i, 0] = i;
 
        // Compute values from smaller
        // to bigger intervals
        for (int j = 1; (1 << j) <= n; j++)
        {
            // Compute minimum value for
            // all intervals with size 2^j
            for (int i = 0;
                 (i + (1 << j) - 1) < n;
                 i++)
            {
                // For arr[2,10], we compare
                // arr[lookup[0,3]] and arr[lookup[3,3]]
                if (arr[lookup[i, j - 1]]
                    < arr[lookup[i + (1 << (j - 1)),
                                 j - 1]])
                    lookup[i, j] = lookup[i, j - 1];
                else
                    lookup[i, j]
                        = lookup[i + (1 << (j - 1)), j - 1];
            }
        }
    }
 
    // Returns minimum of arr[L..R]
    static int query(int[] arr, int L, int R)
    {
        // For [2,10], j = 3
        int j = (int)Math.Log(R - L + 1);
 
        // For [2,10], we compare arr[lookup[0,3]]
        // and arr[lookup[3,3]],
        if (arr[lookup[L, j]]
            <= arr[lookup[R - (1 << j) + 1, j]])
            return arr[lookup[L, j]];
 
        else
            return arr[lookup[R - (1 << j) + 1, j]];
    }
 
    // Prints minimum of given m
    // query ranges in arr[0..n-1]
    static void RMQ(int[] arr,
                    int n, Query[] q, int m)
    {
        // Fills table lookup[n,Log n]
        preprocess(arr, n);
 
        // One by one compute sum of all queries
        for (int i = 0; i < m; i++)
        {
            // Left and right
            // boundaries of current range
            int L = q[i].L, R = q[i].R;
 
            // Print sum of current query range
            Console.WriteLine("Minimum of [" + L + ", " + R
                              + "] is " + query(arr, L, R));
        }
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[] a = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.Length;
        Query[] q = { new Query(0, 4), new Query(4, 7),
                      new Query(7, 8) };
        int m = q.Length;
        RMQ(a, n, q, m);
    }
}
 
// This code is contributed by Princi Singh

Javascript

<script>
// Javascript program to do range minimum query
// in O(1) time with O(n Log n) extra space
// and O(n Log n) preprocessing time
 
 
 
const MAX = 500;
 
// lookup[i][j] is going to store index
// of minimum value in arr[i..j].
// Ideally lookup table size should not be fixed
// and should be determined using n Log n.
// It is kept constant to keep code simple.
let lookup = new Array(MAX).fill(0).map(() => new Array(MAX))
 
// Structure to represent a query range
class Query {
    constructor(L, R) {
        this.L = L;
        this.R = R;
    }
};
 
// Fills lookup array lookup[][]
// in bottom up manner.
function preprocess(arr, n) {
    // Initialize M for the intervals
    // with length 1
    for (let i = 0; i < n; i++)
        lookup[i][0] = i;
 
    // Compute values from smaller
    // to bigger intervals
    for (let j = 1; (1 << j) <= n; j++) {
        // Compute minimum value for
        // all intervals with size 2^j
        for (let i = 0;
            (i + (1 << j) - 1) < n;
            i++) {
            // For arr[2][10], we compare
            // arr[lookup[0][3]]
            // and arr[lookup[3][3]]
            if (arr[lookup[i][j - 1]]
                < arr[lookup[i + (1 << (j - 1))]
                [j - 1]])
                lookup[i][j] = lookup[i][j - 1];
            else
                lookup[i][j]
                    = lookup[i + (1 << (j - 1))][j - 1];
        }
    }
}
 
// Returns minimum of arr[L..R]
function query(arr, L, R) {
    // For [2,10], j = 3
    let j = Math.floor(Math.log(R - L + 1));
 
    // For [2,10], we compare
    // arr[lookup[0][3]]
    // and arr[lookup[3][3]],
    if (arr[lookup[L][j]]
        <= arr[lookup[R - (1 << j) + 1][j]])
        return arr[lookup[L][j]];
 
    else
        return arr[lookup[R - (1 << j) + 1][j]];
}
 
// Prints minimum of given m
// query ranges in arr[0..n-1]
function RMQ(arr, n, q, m) {
    // Fills table lookup[n][Log n]
    preprocess(arr, n);
 
    // One by one compute sum of all queries
    for (let i = 0; i < m; i++) {
        // Left and right boundaries
        // of current range
        let L = q[i].L, R = q[i].R;
 
        // Print sum of current query range
        document.write("Minimum of ["
 
            + L + ", " + R
            + "] is "
            + query(arr, L, R) + "<br>");
    }
}
 
// Driver Code
 
let a = [7, 2, 3, 0, 5, 10, 3, 12, 18];
let n = a.length;
let q = [new Query(0, 4), new Query(4, 7),
new Query(7, 8)];
let m = q.length;
RMQ(a, n, q, m);
 
 
// This code is contributed by Saurabh jaiswal
</script>
Producción

Minimum of [0, 4] is 0
Minimum of [4, 7] is 3
Minimum of [7, 8] is 12

Por lo tanto, el método de tabla dispersa admite la operación de consulta en tiempo O (1) con tiempo de preprocesamiento O (n Log n) y espacio O (n Log n).
Este artículo es una contribución de Ruchir Garg . Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente. 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *