Dada una array arr[] de N enteros, la tarea es realizar las siguientes dos consultas:
- consulta (inicio, fin) : imprime la cantidad de números de Armstrong en el subarreglo de principio a fin
- update(i, x) : agregue x al elemento de array al que hace referencia el índice de array i , es decir: arr[i] = x
Ejemplos:
Entrada: arr = { 18, 153, 8, 9, 14, 5}
Consulta 1: consulta (inicio = 0, final = 4)
Consulta 2: actualización (i = 3, x = 11)
Consulta 3: consulta (inicio = 0, final = 4)
Salida: 3
2
Explicación
en Consulta 1 ,
18 -> 1*1 + 8*8 != 18
153 -> 1*1*1 + 5*5*5 + 3*3*3 = 153
8 -> 8 = 8
9 -> 9 = 9
14 -> 1*1 + 4*4 != 14
el subarreglo [0…4] tiene 3 números de Armstrong a saber. {18, 153, 8, 9, 14}
En la Consulta 2 , el valor en el índice 3 se actualiza a 11,
la array arr ahora es, { 18, 153, 8, 11, 14, 5}
En la Consulta 3 ,
18 – > 1*1 + 8*8 != 18
153 -> 1*1*1 + 5*5*5 + 3*3*3 = 153
8 -> 8 = 8
9 -> 1*1 + 1*1 != 11
14 -> 1*1 + 4* 4 != 14
el subarreglo [0…4] tiene 2 números de Armstrong a saber. {18, 153, 8, 11, 14}
Enfoque: para manejar actualizaciones de puntos y consultas de rango, un árbol de segmentos es óptimo para este propósito.
Un entero positivo de n dígitos se denomina número de Armstrong de orden n (el orden es el número de dígitos) si.
abcd… = pow(a, n) + pow(b, n) + pow(c, n) + pow(d, n) + ….
Para verificar los números de Armstrong, la idea es primero contar los dígitos de los números (o encontrar el orden). Sea n el número de dígitos. Para cada dígito r en el número de entrada x, calcule r^n. Si la suma de todos esos valores es igual a n, configúrelo en 1, de lo contrario, en 0.
Construyendo el árbol de segmentos:
- El problema ahora se reduce a la suma del subarreglo utilizando el problema del árbol de segmentos.
- Ahora, podemos construir el árbol de segmentos donde un Node de hoja se representa como 0 (si no es un número de Armstrong) o 1 (si es un número de Armstrong).
- Los Nodes internos del árbol de segmentos son iguales a la suma de sus Nodes secundarios, por lo tanto, un Node representa los números totales de Armstrong en el rango de L a R con el rango [L, R] debajo de este Node y el subárbol debajo de él.
Manejo de consultas y actualizaciones de puntos:
- Cada vez que recibimos una consulta de principio a fin, podemos consultar el árbol de segmentos para la suma de Nodes en el rango de principio a fin, que a su vez representa la cantidad de números de Armstrong en el rango de principio a fin.
- Para realizar una actualización de punto y para actualizar el valor en el índice i a x, verificamos los siguientes casos:
Deje que el valor anterior de arr i sea y y el nuevo valor sea x.- Caso 1: si x e y son números
de Armstrong La cantidad de números de Armstrong en el subarreglo no cambia, así que solo actualizamos el arreglo y no modificamos el árbol de segmentos - Caso 2: si x e y no son números
de Armstrong La cantidad de números de Armstrong en el subarreglo no cambia, así que solo actualizamos el arreglo y no modificamos el árbol de segmentos - Caso 3: Si y es un número de Armstrong pero x no lo es,
el recuento de números de Armstrong en el subarreglo disminuye, por lo que actualizamos el arreglo y agregamos -1 a cada rango. El índice i que se va a actualizar forma parte del árbol de segmentos. - Caso 4: si y no es un número de Armstrong pero x es un número de Armstrong El número
de números de Armstrong en el subarreglo aumenta, por lo que actualizamos el arreglo y agregamos 1 a cada rango. El índice i que se va a actualizar forma parte del árbol de segmentos.
- Caso 1: si x e y son números
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find the number // of Armstrong numbers in a // subarray and performing updates #include <bits/stdc++.h> using namespace std; #define MAX 1000 // Function that return true // if num is armstrong // else return false bool isArmstrong(int x) { int n = to_string(x).size(); int sum1 = 0; int temp = x; while (temp > 0) { int digit = temp % 10; sum1 += pow(digit, n); temp /= 10; } if (sum1 == x) return true; return false; } // A utility function to get the middle // index from corner indexes. int getMid(int s, int e) { return s + (e - s) / 2; } // Recursive function to get the number // of Armstrong numbers in a given range /* where st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ int queryArmstrongUtil(int* st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part // of given range, then return // the number of Armstrong numbers // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node // is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return queryArmstrongUtil( st, ss, mid, qs, qe, 2 * index + 1) + queryArmstrongUtil( st, mid + 1, se, qs, qe, 2 * index + 2); } // Recursive function to update // the nodes which have the given // index in their range. /* where st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil(int* st, int ss, int se, int i, int diff, int si) { // Base Case: // If the input index lies outside // the range of this segment if (i < ss || i > se) return; // If the input index is in range // of this node, then update the value // of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // Function to update a value in the // input array and segment tree. // It uses updateValueUtil() to update // the value in segment tree void updateValue(int arr[], int* st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { printf("Invalid Input"); return; } int diff, oldValue; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values // both are Armstrong numbers if (isArmstrong(oldValue) && isArmstrong(new_val)) return; // Case 2: Old and new values // both not Armstrong numbers if (!isArmstrong(oldValue) && !isArmstrong(new_val)) return; // Case 3: Old value was Armstrong, // new value is non Armstrong if (isArmstrong(oldValue) && !isArmstrong(new_val)) { diff = -1; } // Case 4: Old value was non Armstrong, // new_val is Armstrong if (!isArmstrong(oldValue) && !isArmstrong(new_val)) { diff = 1; } // Update the values of // nodes in segment tree updateValueUtil( st, 0, n - 1, i, diff, 0); } // Return number of Armstrong numbers // in range from index qs (query start) // to qe (query end). // It mainly uses queryArmstrongUtil() void queryArmstrong(int* st, int n, int qs, int qe) { int ArmstrongInRange = queryArmstrongUtil(st, 0, n - 1, qs, qe, 0); cout << "Number of Armstrong numbers " << "in subarray from " << qs << " to " << qe << " = " << ArmstrongInRange << "\n"; } // Recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node // in segment tree st int constructSTUtil(int arr[], int ss, int se, int* st, int si) { // If there is one element in array, // check if it is Armstrong number // then store 1 in the segment tree // else store 0 and return if (ss == se) { // if arr[ss] is Armstrong number if (isArmstrong(arr[ss])) st[si] = 1; else st[si] = 0; return st[si]; } // If there are more than one elements, // then recur for left and right subtrees // and store the sum of the // two values in this node int mid = getMid(ss, se); st[si] = constructSTUtil( arr, ss, mid, st, si * 2 + 1) + constructSTUtil( arr, mid + 1, se, st, si * 2 + 2); return st[si]; } // Function to construct a segment // tree from given array. // This function allocates memory // for segment tree and // calls constructSTUtil() to // fill the allocated memory int* constructST(int arr[], int n) { // Allocate memory for segment tree // Height of segment tree int x = (int)(ceil(log2(n))); // Maximum size of segment tree int max_size = 2 * (int)pow(2, x) - 1; int* st = new int[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } // Driver Code int main() { int arr[] = { 18, 153, 8, 9, 14, 5 }; int n = sizeof(arr) / sizeof(arr[0]); // Build segment tree from given array int* st = constructST(arr, n); // Query 1: Query(start = 0, end = 4) int start = 0; int end = 4; queryArmstrong(st, n, start, end); // Query 2: Update(i = 3, x = 11), // i.e Update a[i] to x int i = 3; int x = 11; updateValue(arr, st, n, i, x); // Print array after update cout << "Array after update: "; for (int i = 0; i < n; i++) cout << arr[i] << ", "; cout << endl; // Query 3: Query(start = 0, end = 4) start = 0; end = 4; queryArmstrong(st, n, start, end); return 0; }
Python3
# Python3 program to find the number # of Armstrong numbers in a # subarray and performing updates import math MAX = 1000 # Function that return true # if num is armstrong # else return false def isArmstrong(x): n = len(str(x)) sum1 = 0 temp = x while temp > 0: digit = temp % 10 sum1 += pow(digit, n) temp = temp // 10 if sum1 == x: return True return False # A utility function to get the middle # index from corner indexes. def getMid(s, e): return s + (e - s) // 2 # Recursive function to get the number # of Armstrong numbers in a given range # where # st --> Pointer to segment tree # index --> Index of current node in the # segment tree. Initially 0 is passed # as root is always at index 0 # ss & se --> Starting and ending indexes of # the segment represented by current # node, i.e., st[index] # qs & qe --> Starting and ending indexes # of query range def queryArmstrongUtil(st, ss, se, qs, qe, index): # If segment of this node is a part # of given range, then return # the number of Armstrong numbers # in the segment if qs <= ss and qe >= se: return st[index] # If segment of this node # is outside the given range if se < qs or ss > qe: return 0 # If a part of this segment # overlaps with the given range mid = getMid(ss, se) return (queryArmstrongUtil(st, ss, mid, qs, qe, 2 * index + 1) + queryArmstrongUtil(st, mid + 1, se, qs, qe, 2 * index + 2)) # Recursive function to update # the nodes which have the given # index in their range. # where # st, si, ss and se are same as getSumUtil() # i --> index of the element to be updated. # This index is in input array. # diff --> Value to be added to all nodes # which have i in range def updateValueUtil(st, ss, se, i, diff, si): # Base Case: # If the input index lies outside # the range of this segment if i < ss or i > se: return # If the input index is in range # of this node, then update the value # of the node and its children st[si] = st[si] + diff if se != ss: mid = getMid(ss, se) updateValueUtil(st, ss, mid, i, diff, 2 * si + 1) updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2) # Function to update a value in the # input array and segment tree. # It uses updateValueUtil() to update # the value in segment tree def updateValue(arr, st, n, i, new_val): # Check for erroneous input index if i < 0 or i > n - 1: print('Invalid Input') return oldValue = arr[i] # Update the value in array arr[i] = new_val # Case 1: Old and new values # both are Armstrong numbers if (isArmstrong(oldValue) and isArmstrong(new_val)): return # Case 2: Old and new values # both not Armstrong numbers if (not isArmstrong(oldValue) and not isArmstrong(new_val)): return # Case 3: Old value was Armstrong, # new value is non Armstrong if (isArmstrong(oldValue) and (not isArmstrong(new_val))): diff = -1 # Case 4: Old value was non Armstrong, # new_val is Armstrong if (not isArmstrong(oldValue) and not isArmstrong(new_val)): diff = 1 # Update the values of # nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0) # Return number of Armstrong numbers # in range from index qs (query start) # to qe (query end). # It mainly uses queryArmstrongUtil() def queryArmstrong(st, n, qs, qe): ArmstrongInRange = queryArmstrongUtil(st, 0, n - 1, qs, qe, 0) print("Number of Armstrong numbers in " "subarray from", qs, "to", qe, "=", ArmstrongInRange) # Recursive function that constructs # Segment Tree for array[ss..se]. # si is index of current node # in segment tree st def constructSTUtil(arr, ss, se, st, si): # If there is one element in array, # check if it is Armstrong number # then store 1 in the segment tree # else store 0 and return if ss == se: # If arr[ss] is Armstrong number if isArmstrong(arr[ss]): st[si] = 1 else: st[si] = 0 return st[si] # If there are more than one elements, # then recur for left and right subtrees # and store the sum of the # two values in this node mid = getMid(ss, se) st[si] = (constructSTUtil(arr, ss, mid, st, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, st, si * 2 + 2)) return st[si] # Function to construct a segment # tree from given array. # This function allocates memory # for segment tree and # calls constructSTUtil() to # fill the allocated memory def constructST(arr, n): # Allocate memory for segment tree # Height of segment tree x = int(math.ceil(math.log2(n))) # Maximum size of segment tree max_size = 2 * int(pow(2, x)) - 1 st = [-1] * max_size # Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0) # Return the constructed segment tree return st # Driver code arr = [ 18, 153, 8, 9, 14, 5 ] n = len(arr) # Build segment tree from given array st = constructST(arr, n) # Query 1: Query(start = 0, end = 4) start = 0 end = 4 queryArmstrong(st, n, start, end) # Query 2: Update(i = 3, x = 11), # i.e Update a[i] to x i = 3 x = 11 updateValue(arr, st, n, i, x) # Print array after update print("Array after update:", end = " ") for i in range(n): print(arr[i], end = ", ") print() # Query 3: Query(start = 0, end = 4) start = 0 end = 4 queryArmstrong(st, n, start, end) # This code is contributed by stutipathak31jan
C#
// C# program to find the number // of Armstrong numbers in a // subarray and performing updates using System; class GFG{ public int MAX = 1000; // Function that return true // if num is armstrong // else return false static bool isArmstrong(int x) { int n = x.ToString().Length; int sum1 = 0; int temp = x; while (temp > 0) { int digit = temp % 10; sum1 += (int)Math.Pow(digit, n); temp /= 10; } if (sum1 == x) return true; return false; } // A utility function to get the middle // index from corner indexes. static int getMid(int s, int e) { return s + (e - s) / 2; } // Recursive function to get the number // of Armstrong numbers in a given range /* where st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ static int queryArmstrongUtil(int[] st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part // of given range, then return // the number of Armstrong numbers // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node // is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return queryArmstrongUtil(st, ss, mid, qs, qe, 2 * index + 1) + queryArmstrongUtil(st, mid + 1, se, qs, qe, 2 * index + 2); } // Recursive function to update // the nodes which have the given // index in their range. /* where st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ static void updateValueUtil(int[] st, int ss, int se, int i, int diff, int si) { // Base Case: // If the input index lies outside // the range of this segment if (i < ss || i > se) return; // If the input index is in range // of this node, then update the value // of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // Function to update a value in the // input array and segment tree. // It uses updateValueUtil() to update // the value in segment tree static void updateValue(int[] arr, int[] st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { Console.Write("Invalid Input"); return; } int diff = 0, oldValue = 0; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values // both are Armstrong numbers if (isArmstrong(oldValue) && isArmstrong(new_val)) return; // Case 2: Old and new values // both not Armstrong numbers if (!isArmstrong(oldValue) && !isArmstrong(new_val)) return; // Case 3: Old value was Armstrong, // new value is non Armstrong if (isArmstrong(oldValue) && !isArmstrong(new_val)) { diff = -1; } // Case 4: Old value was non Armstrong, // new_val is Armstrong if (!isArmstrong(oldValue) && !isArmstrong(new_val)) { diff = 1; } // Update the values of // nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); } // Return number of Armstrong numbers // in range from index qs (query start) // to qe (query end). // It mainly uses queryArmstrongUtil() static void queryArmstrong(int[] st, int n, int qs, int qe) { int ArmstrongInRange = queryArmstrongUtil( st, 0, n - 1, qs, qe, 0); Console.WriteLine("Number of Armstrong numbers " + "in subarray from " + qs + " to " + qe + " = " + ArmstrongInRange); } // Recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node // in segment tree st static int constructSTUtil(int[] arr, int ss, int se, int[] st, int si) { // If there is one element in array, // check if it is Armstrong number // then store 1 in the segment tree // else store 0 and return if (ss == se) { // If arr[ss] is Armstrong number if (isArmstrong(arr[ss])) st[si] = 1; else st[si] = 0; return st[si]; } // If there are more than one elements, // then recur for left and right subtrees // and store the sum of the // two values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, st, si * 2 + 2); return st[si]; } // Function to construct a segment // tree from given array. // This function allocates memory // for segment tree and // calls constructSTUtil() to // fill the allocated memory static int[] constructST(int[] arr, int n) { // Allocate memory for segment tree // Height of segment tree int x = (int)(Math.Ceiling(Math.Log(n, 2))); // Maximum size of segment tree int max_size = 2 * (int)Math.Pow(2, x) - 1; int[] st = new int[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } // Driver Code public static void Main(string[] args) { int[] arr = { 18, 153, 8, 9, 14, 5 }; int n = arr.Length; // Build segment tree from given array int[] st = constructST(arr, n); // Query 1: Query(start = 0, end = 4) int start = 0; int end = 4; queryArmstrong(st, n, start, end); // Query 2: Update(i = 3, x = 11), // i.e Update a[i] to x int i = 3; int x = 11; updateValue(arr, st, n, i, x); // Print array after update Console.Write("Array after update: "); for(int j = 0; j < n; j++) Console.Write(arr[j] + ", "); Console.WriteLine(); // Query 3: Query(start = 0, end = 4) start = 0; end = 4; queryArmstrong(st, n, start, end); } } // This code is contributed by ukasp
Number of Armstrong numbers in subarray from 0 to 4 = 3 Array after update: 18, 153, 8, 11, 14, 5, Number of Armstrong numbers in subarray from 0 to 4 = 2
Complejidad de tiempo: la complejidad de tiempo de cada consulta y actualización es O (log N) y la de construir el árbol de segmentos es O (N)
Publicación traducida automáticamente
Artículo escrito por muskan_garg y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA