Dada una array de n enteros no negativos. La tarea es encontrar la frecuencia de un elemento particular en el rango arbitrario de array[]. El rango se proporciona como posiciones (no como índices basados en 0) en la array. Puede haber múltiples consultas de un tipo determinado.
Ejemplos:
Input : arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11}; left = 2, right = 8, element = 8 left = 2, right = 5, element = 6 Output : 3 1 The element 8 appears 3 times in arr[left-1..right-1] The element 6 appears 1 time in arr[left-1..right-1]
Enfoque ingenuo: es recorrer de izquierda a derecha y actualizar la variable de conteo cada vez que encontramos el elemento.
A continuación se muestra el código del enfoque Naive: –
C++
// C++ program to find total count of an element // in a range #include<bits/stdc++.h> using namespace std; // Returns count of element in arr[left-1..right-1] int findFrequency(int arr[], int n, int left, int right, int element) { int count = 0; for (int i=left-1; i<=right; ++i) if (arr[i] == element) ++count; return count; } // Driver Code int main() { int arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11}; int n = sizeof(arr) / sizeof(arr[0]); // Print frequency of 2 from position 1 to 6 cout << "Frequency of 2 from 1 to 6 = " << findFrequency(arr, n, 1, 6, 2) << endl; // Print frequency of 8 from position 4 to 9 cout << "Frequency of 8 from 4 to 9 = " << findFrequency(arr, n, 4, 9, 8); return 0; }
Java
// JAVA Code to find total count of an element // in a range class GFG { // Returns count of element in arr[left-1..right-1] public static int findFrequency(int arr[], int n, int left, int right, int element) { int count = 0; for (int i = left - 1; i < right; ++i) if (arr[i] == element) ++count; return count; } /* Driver program to test above function */ public static void main(String[] args) { int arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11}; int n = arr.length; // Print frequency of 2 from position 1 to 6 System.out.println("Frequency of 2 from 1 to 6 = " + findFrequency(arr, n, 1, 6, 2)); // Print frequency of 8 from position 4 to 9 System.out.println("Frequency of 8 from 4 to 9 = " + findFrequency(arr, n, 4, 9, 8)); } } // This code is contributed by Arnav Kr. Mandal.
Python3
# Python program to find total # count of an element in a range # Returns count of element # in arr[left-1..right-1] def findFrequency(arr, n, left, right, element): count = 0 for i in range(left - 1, right): if (arr[i] == element): count += 1 return count # Driver Code arr = [2, 8, 6, 9, 8, 6, 8, 2, 11] n = len(arr) # Print frequency of 2 from position 1 to 6 print("Frequency of 2 from 1 to 6 = ", findFrequency(arr, n, 1, 6, 2)) # Print frequency of 8 from position 4 to 9 print("Frequency of 8 from 4 to 9 = ", findFrequency(arr, n, 4, 9, 8)) # This code is contributed by Anant Agarwal.
C#
// C# Code to find total count // of an element in a range using System; class GFG { // Returns count of element // in arr[left-1..right-1] public static int findFrequency(int []arr, int n, int left, int right, int element) { int count = 0; for (int i = left - 1; i < right; ++i) if (arr[i] == element) ++count; return count; } // Driver Code public static void Main() { int []arr = {2, 8, 6, 9, 8, 6, 8, 2, 11}; int n = arr.Length; // Print frequency of 2 // from position 1 to 6 Console.WriteLine("Frequency of 2 from 1 to 6 = " + findFrequency(arr, n, 1, 6, 2)); // Print frequency of 8 // from position 4 to 9 Console.Write("Frequency of 8 from 4 to 9 = " + findFrequency(arr, n, 4, 9, 8)); } } // This code is contributed by Nitin Mittal.
PHP
<?php // PHP program to find total count of // an element in a range // Returns count of element in // arr[left-1..right-1] function findFrequency(&$arr, $n, $left, $right, $element) { $count = 0; for ($i = $left - 1; $i <= $right; ++$i) if ($arr[$i] == $element) ++$count; return $count; } // Driver Code $arr = array(2, 8, 6, 9, 8, 6, 8, 2, 11); $n = sizeof($arr); // Print frequency of 2 from position 1 to 6 echo "Frequency of 2 from 1 to 6 = ". findFrequency($arr, $n, 1, 6, 2) ."\n"; // Print frequency of 8 from position 4 to 9 echo "Frequency of 8 from 4 to 9 = ". findFrequency($arr, $n, 4, 9, 8); // This code is contributed by ita_c ?>
Javascript
<script> // Javascript Code to find total count of an element // in a range // Returns count of element in arr[left-1..right-1] function findFrequency(arr,n,left,right,element) { let count = 0; for (let i = left - 1; i < right; ++i) if (arr[i] == element) ++count; return count; } /* Driver program to test above function */ let arr=[2, 8, 6, 9, 8, 6, 8, 2, 11]; let n = arr.length; // Print frequency of 2 from position 1 to 6 document.write("Frequency of 2 from 1 to 6 = " + findFrequency(arr, n, 1, 6, 2)+"<br>"); // Print frequency of 8 from position 4 to 9 document.write("Frequency of 8 from 4 to 9 = " + findFrequency(arr, n, 4, 9, 8)); // This code is contributed by rag2127 </script>
Frequency of 2 from 1 to 6 = 1 Frequency of 8 from 4 to 9 = 2
La complejidad temporal de este enfoque es O(derecha – izquierda + 1) u O(n)
Espacio auxiliar : O(1)
Un enfoque eficiente es usar hashing. En C++, podemos usar unordered_map
- Al principio, almacenaremos la posición en el mapa [] de cada elemento distinto como un vector como ese
int arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11}; map[2] = {1, 8} map[8] = {2, 5, 7} map[6] = {3, 6} ans so on...
- Como podemos ver que los elementos en map[] ya están ordenados (porque insertamos elementos de izquierda a derecha), la respuesta se reduce a encontrar el recuento total en ese hash map[] usando un método de búsqueda binaria.
- En C++ podemos usar lower_bound que devolverá un iterador que apunta al primer elemento en el rango [first, last] que tiene un valor no menor que ‘left’. y upper_bound devuelve un iterador que apunta al primer elemento en el rango [primero, último] que tiene un valor mayor que ‘derecho’.
- Después de eso, solo tenemos que restar el resultado de upper_bound() y lower_bound() para obtener la respuesta final. Por ejemplo, supongamos que queremos encontrar el recuento total de 8 en el rango de [1 a 6], entonces la función map[8] de lower_bound() devolverá el resultado 0 (apuntando a 2) y upper_bound() lo hará. devuelve 2 (apuntando a 7), por lo que debemos restar ambos resultados como 2 – 0 = 2.
A continuación se muestra el código del enfoque anterior.
C++
// C++ program to find total count of an element #include<bits/stdc++.h> using namespace std; unordered_map< int, vector<int> > store; // Returns frequency of element in arr[left-1..right-1] int findFrequency(int arr[], int n, int left, int right, int element) { // Find the position of first occurrence of element int a = lower_bound(store[element].begin(), store[element].end(), left) - store[element].begin(); // Find the position of last occurrence of element int b = upper_bound(store[element].begin(), store[element].end(), right) - store[element].begin(); return b-a; } // Driver code int main() { int arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11}; int n = sizeof(arr) / sizeof(arr[0]); // Storing the indexes of an element in the map for (int i=0; i<n; ++i) store[arr[i]].push_back(i+1); //starting index from 1 // Print frequency of 2 from position 1 to 6 cout << "Frequency of 2 from 1 to 6 = " << findFrequency(arr, n, 1, 6, 2) <<endl; // Print frequency of 8 from position 4 to 9 cout << "Frequency of 8 from 4 to 9 = " << findFrequency(arr, n, 4, 9, 8); return 0; }
Python3
# Python3 program to find total count of an element from collections import defaultdict as dict from bisect import bisect_left as lower_bound from bisect import bisect_right as upper_bound store = dict(list) # Returns frequency of element # in arr[left-1..right-1] def findFrequency(arr, n, left, right, element): # Find the position of # first occurrence of element a = lower_bound(store[element], left) # Find the position of # last occurrence of element b = upper_bound(store[element], right) return b - a # Driver code arr = [2, 8, 6, 9, 8, 6, 8, 2, 11] n = len(arr) # Storing the indexes of # an element in the map for i in range(n): store[arr[i]].append(i + 1) # Print frequency of 2 from position 1 to 6 print("Frequency of 2 from 1 to 6 = ", findFrequency(arr, n, 1, 6, 2)) # Print frequency of 8 from position 4 to 9 print("Frequency of 8 from 4 to 9 = ", findFrequency(arr, n, 4, 9, 8)) # This code is contributed by Mohit Kumar
Frequency of 2 from 1 to 6 = 1 Frequency of 8 from 4 to 9 = 2
Este enfoque será beneficioso si tenemos una gran cantidad de consultas de un rango arbitrario que preguntan la frecuencia total de un elemento en particular.
Complejidad de tiempo: O (log N) para consulta única.
Este artículo es una contribución de Shubham Bansal . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA