Consultas para encontrar el elemento de array máximo después de eliminar elementos de un rango dado

Dada una array arr[] y una array Q[][] que consta de consultas de la forma {L, R} , la tarea de cada consulta es encontrar el elemento máximo de la array después de eliminar los elementos de la array del rango de índices [L , R] . Si la array se vacía después de eliminar los elementos del rango de índices dado, imprima 0 .

Ejemplos:

Entrada: arr[] = {5, 6, 8, 10, 15}, Q = {{0, 1}, {0, 2}, {1, 4}}
Salida:
15
15
5
Explicación:
Para la primera consulta {0 1}: elimine los elementos de la array en el rango [0, 1], la array se modifica a {8, 10, 15}. Por lo tanto, el elemento máximo es 15.
Para la segunda consulta {0, 2}: elimine los elementos de la array en el rango [0, 2], la array se modifica a {10, 15}. Por lo tanto, el elemento máximo es 15.
Para la tercera consulta {1 4}: elimine los elementos de la array en el rango [1, 4], la array se modifica a {5}. Por lo tanto, el elemento máximo es 5.

Entrada: arr[] = {8, 12, 14, 10, 13}, Q = {{0, 3}, {0, 4}, {4, 4}}
Salida:
13
-1
14

Enfoque ingenuo: el enfoque más simple es recorrer la array para encontrar el elemento máximo después de eliminar los elementos de la array en el rango dado en cada consulta.

Complejidad temporal: O(N*Q)
Espacio auxiliar: O(1)

Enfoque eficiente: para optimizar el enfoque anterior, la idea es utilizar dos arrays auxiliares: una almacenará el prefijo máximo (elemento máximo en el rango [0, i] ) y la otra array almacenará el sufijo máximo (elemento máximo en el rango). rango [i, N – 1] ). Luego, para cada consulta [L, R] , la respuesta será un máximo de prefixMax[l – 1] y suffixMax[r + 1] . Siga los pasos a continuación para resolver el problema:

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum element
// after removing elements in range [l, r]
int findMaximum(int arr[], int N, int Q,
                int queries[][2])
{
    // Store prefix maximum element
    int prefix_max[N + 1] = { 0 };
 
    // Store suffix maximum element
    int suffix_max[N + 1] = { 0 };
 
    // Prefix max till first index
    // is first index itself
    prefix_max[0] = arr[0];
 
    // Traverse the array to fill
    // prefix max array
    for (int i = 1; i < N; i++) {
 
        // Store maximum till index i
        prefix_max[i]
            = max(prefix_max[i - 1],
                  arr[i]);
    }
 
    // Suffix max till last index
    // is last index itself
    suffix_max[N - 1] = arr[N - 1];
 
    // Traverse the array to fill
    // suffix max array
    for (int i = N - 2; i >= 0; i--) {
 
        // Store maximum till index i
        suffix_max[i]
            = max(suffix_max[i + 1],
                  arr[i]);
    }
 
    // Traverse all queries
    for (int i = 0; i < Q; i++) {
 
        // Store the starting and the
        // ending index of the query
        int l = queries[i][0];
        int r = queries[i][1];
 
        // Edge Cases
        if (l == 0 && r == (N - 1))
            cout << "0\n";
 
        else if (l == 0)
            cout << suffix_max[r + 1]
                 << "\n";
 
        else if (r == (N - 1))
            cout << prefix_max[l - 1]
                 << "\n";
 
        // Otherwise
        else
            cout << max(prefix_max[l - 1],
                        suffix_max[r + 1])
                 << "\n";
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 6, 8, 10, 15 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int queries[][2] = { { 0, 1 }, { 0, 2 }, { 1, 4 } };
    int Q = sizeof(queries) / sizeof(queries[0]);
     
    findMaximum(arr, N, Q, queries);
 
    return 0;
}

Java

// Java program for the above approach
class GFG
{
 
// Function to find the maximum element
// after removing elements in range [l, r]
static void findMaximum(int arr[], int N, int Q,
                int queries[][])
{
   
    // Store prefix maximum element
    int prefix_max[] = new int[N + 1];
 
    // Store suffix maximum element
    int suffix_max[] = new int[N + 1];
 
    // Prefix max till first index
    // is first index itself
    prefix_max[0] = arr[0];
 
    // Traverse the array to fill
    // prefix max array
    for (int i = 1; i < N; i++) {
 
        // Store maximum till index i
        prefix_max[i]
            = Math.max(prefix_max[i - 1],
                  arr[i]);
    }
 
    // Suffix max till last index
    // is last index itself
    suffix_max[N - 1] = arr[N - 1];
 
    // Traverse the array to fill
    // suffix max array
    for (int i = N - 2; i >= 0; i--) {
 
        // Store maximum till index i
        suffix_max[i]
            = Math.max(suffix_max[i + 1],
                  arr[i]);
    }
 
    // Traverse all queries
    for (int i = 0; i < Q; i++) {
 
        // Store the starting and the
        // ending index of the query
        int l = queries[i][0];
        int r = queries[i][1];
 
        // Edge Cases
        if (l == 0 && r == (N - 1))
            System.out.print("0\n");
        else if (l == 0)
            System.out.print(suffix_max[r + 1]
                + "\n");
        else if (r == (N - 1))
            System.out.print(prefix_max[l - 1]
                + "\n");
 
        // Otherwise
        else
            System.out.print(Math.max(prefix_max[l - 1],
                        suffix_max[r + 1])
                + "\n");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 5, 6, 8, 10, 15 };
    int N = arr.length;
    int queries[][] = { { 0, 1 }, { 0, 2 }, { 1, 4 } };
    int Q = queries.length;
    findMaximum(arr, N, Q, queries);
}
}
 
// This code is contributed by shikhasingrajput

Python3

# Python3 program for the above approach
 
# Function to find the maximum element
# after removing elements in range [l, r]
def findMaximum(arr, N, Q, queries):
   
    # Store prefix maximum element
    prefix_max = [0]*(N + 1)
 
    # Store suffix maximum element
    suffix_max = [0]*(N + 1)
 
    # Prefix max till first index
    # is first index itself
    prefix_max[0] = arr[0]
 
    # Traverse the array to fill
    # prefix max array
    for i in range(1, N):
 
        # Store maximum till index i
        prefix_max[i]= max(prefix_max[i - 1], arr[i])
 
    # Suffix max till last index
    # is last index itself
    suffix_max[N - 1] = arr[N - 1]
 
    # Traverse the array to fill
    # suffix max array
    for i in range(N - 2, -1, -1):
 
        # Store maximum till index i
        suffix_max[i] = max(suffix_max[i + 1], arr[i])
 
    # Traverse all queries
    for i in range(Q):
 
        # Store the starting and the
        # ending index of the query
        l = queries[i][0]
        r = queries[i][1]
 
        # Edge Cases
        if (l == 0 and r == (N - 1)):
            print("0")
        elif (l == 0):
            print(suffix_max[r + 1])
        elif (r == (N - 1)):
            print(prefix_max[l - 1])
         
        # Otherwise
        else:
            print(max(prefix_max[l - 1], suffix_max[r + 1]))
 
# Driver Code
if __name__ == '__main__':
    arr = [5, 6, 8, 10, 15]
    N = len(arr)
    queries = [ [ 0, 1 ], [ 0, 2 ], [ 1, 4 ] ]
    Q = len(queries)
    findMaximum(arr, N, Q, queries)
 
    # This code is contributed by mohit kumar 29.

C#

// C# program for the above approach
using System;
public class GFG
{
 
// Function to find the maximum element
// after removing elements in range [l, r]
static void findMaximum(int[] arr, int N, int Q,
                int[,] queries)
{
   
    // Store prefix maximum element
    int[] prefix_max = new int[N + 1];
 
    // Store suffix maximum element
    int[] suffix_max = new int[N + 1];
 
    // Prefix max till first index
    // is first index itself
    prefix_max[0] = arr[0];
 
    // Traverse the array to fill
    // prefix max array
    for (int i = 1; i < N; i++)
    {
 
        // Store maximum till index i
        prefix_max[i]
            = Math.Max(prefix_max[i - 1],
                  arr[i]);
    }
 
    // Suffix max till last index
    // is last index itself
    suffix_max[N - 1] = arr[N - 1];
 
    // Traverse the array to fill
    // suffix max array
    for (int i = N - 2; i >= 0; i--)
    {
 
        // Store maximum till index i
        suffix_max[i]
            = Math.Max(suffix_max[i + 1],
                  arr[i]);
    }
 
    // Traverse all queries
    for (int i = 0; i < Q; i++)
    {
 
        // Store the starting and the
        // ending index of the query
        int l = queries[i, 0];
        int r = queries[i, 1];
 
        // Edge Cases
        if (l == 0 && r == (N - 1))
            Console.Write("0\n");
        else if (l == 0)
            Console.Write(suffix_max[r + 1]
                + "\n");
        else if (r == (N - 1))
            Console.Write(prefix_max[l - 1]
                + "\n");
 
        // Otherwise
        else
            Console.Write(Math.Max(prefix_max[l - 1],
                        suffix_max[r + 1])
                + "\n");
    }
}
 
 
// Driver Code
static public void Main ()
{
    int[] arr = { 5, 6, 8, 10, 15 };
    int N = arr.Length;
    int[,] queries = { { 0, 1 }, { 0, 2 }, { 1, 4 } };
    int Q = queries.GetLength(0);
    findMaximum(arr, N, Q, queries);
}
}
 
// This code is contributed by sanjoy_62.

Javascript

<script>
 
// JavaScript program of the above approach
 
// Function to find the maximum element
// after removing elements in range [l, r]
function findMaximum(arr, N, Q,
                queries)
{
    
    // Store prefix maximum element
    let prefix_max = [];
  
    // Store suffix maximum element
    let suffix_max = [];
  
    // Prefix max till first index
    // is first index itself
    prefix_max[0] = arr[0];
  
    // Traverse the array to fill
    // prefix max array
    for (let i = 1; i < N; i++) {
  
        // Store maximum till index i
        prefix_max[i]
            = Math.max(prefix_max[i - 1],
                  arr[i]);
    }
  
    // Suffix max till last index
    // is last index itself
    suffix_max[N - 1] = arr[N - 1];
  
    // Traverse the array to fill
    // suffix max array
    for (let i = N - 2; i >= 0; i--) {
  
        // Store maximum till index i
        suffix_max[i]
            = Math.max(suffix_max[i + 1],
                  arr[i]);
    }
  
    // Traverse all queries
    for (let i = 0; i < Q; i++)
    {
  
        // Store the starting and the
        // ending index of the query
        let l = queries[i][0];
        let r = queries[i][1];
  
        // Edge Cases
        if (l == 0 && r == (N - 1))
            document.write("0");
        else if (l == 0)
            document.write(suffix_max[r + 1]
                + "<br/>");
        else if (r == (N - 1))
            document.write(prefix_max[l - 1]
                + "<br/>");
  
        // Otherwise
        else
            document.write(Math.max(prefix_max[l - 1],
                        suffix_max[r + 1])
                + "<br/>");
    }
}
 
    // Driver Code   
    let arr = [ 5, 6, 8, 10, 15 ];
    let N = arr.length;
    let queries = [[ 0, 1 ], [ 0, 2 ], [ 1, 4 ]];
    let Q = queries.length;
    findMaximum(arr, N, Q, queries);
 
// This code is contributed by avijitmondal1998.
</script>
Producción: 

15
15
5

 

Complejidad temporal: O(N + Q)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por shubhampokhriyal2018 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *