Consultas para reemplazar subarreglos por arreglos de igual longitud con un máximo de P reemplazos permitidos para cualquier elemento del arreglo

Dada una array , arr[] de tamaño N , un entero P y una array 2D Q[][] que consta de consultas del siguiente tipo:

  • 1 LRB[R – L + 1]: La tarea de esta consulta es reemplazar el subarreglo {arr[L], … arr[R] con el arreglo B[] b dado que cualquier elemento del arreglo se puede reemplazar como máximo P veces .
  • 2 X: la tarea de esta consulta es imprimir arr[X] .

Ejemplos:

Entrada: arr[] = {3, 10, 4, 2, 8, 7}, P = 1, Q[][] = {{1, 0, 3, 3, 2, 1, 11}, {2, 3}, {1, 2, 3, 5, 7}, {2, 2} }
Salida : 11 1
Explicación:
Consulta 1: Reemplazar el subarreglo {arr[0], …, arr[3]} con el arreglo { 3, 2, 1, 11} modifica arr[] a {3, 2, 1, 11, 8, 7}
Consulta 2: Imprimir arr[3].
Consulta 3: dado que P = 1, el subarreglo {arr[2], …, arr[3]} no se puede reemplazar más de una vez.
Consulta 4: Imprimir arr[2].

Entrada: arr[] = {1, 2, 3, 4, 5}, P = 2, Q[][] = {{2, 0}, {1, 1, 3, 6, 7, 8}, { 1, 3, 4, 10, 12}, {2, 4}}
Salida: 1 12

Enfoque: El problema se puede resolver utilizando el algoritmo Union-Find . La idea es recorrer el arreglo Q[][] y verificar si Q[0] es igual a 1 o no. Si se determina que es cierto, reemplace el subarreglo con el nuevo arreglo y cada vez que cualquier elemento del arreglo haya sido reemplazado P veces, luego cree un nuevo subconjunto usando union-find . Siga los pasos a continuación para resolver el problema:

  • Inicialice una array, digamos visitado [] , donde visitado [i] el índice de verificación i está presente en cualquier subconjunto disjunto o no.
  • Inicialice una array, digamos count[] , donde count[i] almacena cuántas veces se ha reemplazado arr[i] .
  • Inicialice una array, digamos last[] , para almacenar el elemento más grande de cada subconjunto disjunto.
  • Inicialice una array, digamos parent[] , para almacenar el elemento más pequeño de cada subconjunto disjunto.
  • Recorra la array Q[][] y para cada consulta verifique si Q[i][0] == 1 o no. Si se encuentra que es cierto, realice las siguientes operaciones: 
    • Itere sobre el rango [Q[i][1], Q[i][2]] usando la variable low y verifique si visited[low] es verdadero o no. Si se determina que es cierto, busque el padre de ese subconjunto donde está presente Low , busque el elemento más grande presente en el subconjunto.
    • De lo contrario, verifique si count[low] es menor que P o no. Si se determina que es cierto, reemplace el valor de arr[bajo] con el valor correspondiente.
    • De lo contrario, verifique si count[low] es igual a P o no. Si se determina que es cierto, cree un nuevo subconjunto separado del índice actual.
  • De lo contrario, imprima arr[Q[i][1]]] .

A continuación se muestra la implementación del enfoque anterior:

Java

// Java program to implement
// the above approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // visited[i]: Check index i is present
    // in any disjoint subset or not.
    static boolean[] visited;
 
    // Store the smallest element
    // of each disjoint subset
    static int[] parent;
 
    // count[i]: Stores the count
    // of replacements of arr[i]
    static int[] last;
 
    // Store the largest element
    // of each disjoint subset
    static int[] count;
 
    // Function to process all the given Queries
    static void processQueries(int[] arr, int P,
                               List<List<Integer> > Q)
    {
        // Traverse the queries[][] array
        for (int i = 0; i < Q.size(); i++) {
 
            // Stores the current query
            List<Integer> query = Q.get(i);
 
            // If query of type is 1
            if (query.get(0) == 1) {
 
                // Perform the query of type 1
                processTypeOneQuery(query, arr, P);
            }
 
            // If query of type is 2
            else {
 
                // Stores 2nd element of
                // current query
                int index = query.get(1);
 
                // Print arr[index]
                System.out.println(arr[index]);
            }
        }
    }
 
    // Function to perform the query of type 1
    static void processTypeOneQuery(
        List<Integer> query, int[] arr, int P)
    {
        // Stores the value of L
        int low = query.get(1);
 
        // Stores the value of R
        int high = query.get(2);
 
        // Stores leftmost index of the
        // subarray for which a new
        // subset can be generated
        int left = -1;
 
        // Stores index of
        // the query[] array
        int j = 3;
 
        // Iterate over the
        // range [low, high]
        while (low <= high) {
 
            // If low is present in
            // any of the subset
            if (visited[low]) {
 
                // If no subset created for
                // the subarray arr[left...low - 1]
                if (left != -1) {
 
                    // Create a new subset
                    newUnion(left, low - 1,
                             arr.length);
 
                    // Update left
                    left = -1;
                }
 
                // Stores next index to be
                // processed
                int jump = findJumpLength(low);
 
                // Update low
                low += jump;
 
                // Update j
                j += jump;
            }
 
            // If arr[low] has been
            // already replaced P times
            else if (count[low] == P) {
 
                // If already subset
                // created for left
                if (left == -1) {
 
                    // Update left
                    left = low;
                }
 
                // Mark low as an element
                // of any subset
                visited[low] = true;
 
                // Update low
                low++;
 
                // Update j
                j++;
            }
 
            // If arr[low] has been replaced
            // less than P times
            else {
 
                // If no subset created for
                // the subarray arr[left...low - 1]
                if (left != -1) {
 
                    // Create a new subset
                    newUnion(left, low - 1, arr.length);
 
                    // Update left
                    left = -1;
                }
 
                // Replace arr[low] with
                // the corresponding value
                arr[low] = query.get(j);
 
                // Update count[low]
                count[low]++;
 
                // Update low
                low++;
 
                // Update j
                j++;
            }
        }
 
        // If no subset has been created for
        // the subarray arr[left...low - 1]
        if (left != -1) {
 
            // Create a new subset
            newUnion(left, high, arr.length);
        }
    }
 
    // Function to find the next index
    // to be processed after visiting low
    static int findJumpLength(int low)
    {
 
        // Stores smallest index of
        // the subset where low present
        int p = findParent(low);
 
        // Stores next index
        // to be processed
        int nextIndex = last[p] + 1;
 
        // Stores difference between
        // low and nextIndex
        int jump = (nextIndex - low);
 
        // Return jump
        return jump;
    }
 
    // Function to create a new subset
    static void newUnion(int low, int high,
                         int N)
    {
 
        // Iterate over
        // the range [low + 1, high]
        for (int i = low + 1; i <= high;
             i++) {
 
            // Perform union operation
            // on low
            union(low, i);
        }
 
        // If just smaller element of low
        // is present in any of the subset
        if (low > 0 && visited[low - 1]) {
 
            // Perform union on (low - 1)
            union(low - 1, low);
        }
 
        // If just greater element of high
        // is present in any of the subset
        if (high < N - 1 && visited[high + 1]) {
 
            // Perform union on high
            union(high, high + 1);
        }
    }
 
    // Function to find the smallest
    // element of the subset
    static int findParent(int u)
    {
 
        // Base Case
        if (parent[u] == u)
            return u;
 
        // Stores smallest element
        // of parent[u
        return parent[u]
            = findParent(parent[u]);
    }
 
    // Function to perform union operation
    static void union(int u, int v)
    {
        // Stores smallest element
        // of subset containing u
        int p1 = findParent(u);
 
        // Stores smallest element
        // of subset containing u
        int p2 = findParent(v);
 
        // Update parent[p2]
        parent[p2] = p1;
 
        // Update last[p1]
        last[p1] = last[p2];
    }
 
    // Function to find all the queries
    static List<List<Integer> > getQueries()
    {
 
        // Stores all the queries
        List<List<Integer> > Q
            = new ArrayList<List<Integer> >();
 
        // Initialize all queries
        Integer[] query1 = { 1, 0, 3, 3, 2,
                             1, 11 };
        Integer[] query2 = { 2, 3 };
        Integer[] query3 = { 1, 2, 3, 5, 7 };
        Integer[] query4 = { 2, 2 };
 
        // Insert all queries
        Q.add(Arrays.asList(query1));
        Q.add(Arrays.asList(query2));
        Q.add(Arrays.asList(query3));
        Q.add(Arrays.asList(query4));
 
        // Return all queries
        return Q;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        int[] arr = { 3, 10, 4, 2, 8, 7 };
        int N = arr.length;
        int P = 1;
 
        parent = new int[N];
        last = new int[N];
        count = new int[N];
        visited = new boolean[N];
 
        // Initialize parent[] and
        // last[] array
        for (int i = 0; i < parent.length;
             i++) {
 
            // Update parent[i]
            parent[i] = i;
 
            // Update last[i]
            last[i] = i;
        }
 
        List<List<Integer> > Q = getQueries();
        processQueries(arr, P, Q);
    }
}

Python3

# Python3 program to implement
# the above approach
 
# visited[i]: Check index i is present
# in any disjoint subset or not.
visited = []
 
# Store the smallest element
# of each disjoint subset
parent = []
 
# count[i]: Stores the count
# of replacements of arr[i]
last = []
 
# Store the largest element
# of each disjoint subset
count = []
 
# Function to process all the given Queries
def processQueries(arr, P, Q):
   
    # Traverse the [,]queries array
    for i in range(len(Q)):
     
        # Stores the current query
        query = Q[i];
 
        # If query of type is 1
        if (query[0] == 1):
           
            # Perform the query of type 1
            processTypeOneQuery(query, arr, P);
         
        # If query of type is 2
        else:
           
            # Stores 2nd element of
            # current query
            index = query[1];
             
            # Print arr[index]
            print(arr[index]);
         
# Function to perform the query of type 1
def processTypeOneQuery(query, arr, P):
 
    # Stores the value of L
    low = query[1];
 
    # Stores the value of R
    high = query[2];
 
    # Stores leftmost index of the
    # subarray for which a new
    # subset can be generated
    left = -1;
     
    # Stores index of
    # the query[] array
    j = 3;
     
    # Iterate over the
    # range [low, high]
    while (low <= high):
       
        # If low is present in
        # any of the subset
        if (visited[low]):
           
            # If no subset created for
            # the subarray arr[left...low - 1]
            if (left != -1):
               
                # Create a new subset
                newUnion(left, low - 1,len(arr));
                 
                # Update left
                left = -1;
             
            # Stores next index to be
            # processed
            jump = findJumpLength(low);
             
            # Update low
            low += jump;
             
            # Update j
            j += jump;
         
        # If arr[low] has been
        # already replaced P times
        elif (count[low] == P):
           
            # If already subset
            # created for left
            if (left == -1):
               
                # Update left
                left = low;
             
            # Mark low as an element
            # of any subset
            visited[low] = True;
             
            # Update low
            low += 1
             
            # Update j
            j += 1
         
        # If arr[low] has been replaced
        # less than P times
        else:
           
            # If no subset created for
            # the subarray arr[left...low - 1]
            if (left != -1):
               
                # Create a new subset
                newUnion(left, low - 1, len(arr));
                 
                # Update left
                left = -1;
             
            # Replace arr[low] with
            # the corresponding value
            arr[low] = query[j];
             
            # Update count[low]
            count[low] += 1
             
            # Update low
            low += 1
             
            # Update j
            j += 1
         
    # If no subset has been created for
    # the subarray arr[left...low - 1]
    if (left != -1):
       
        # Create a new subset
        newUnion(left, high, len(arr));
     
# Function to find the next index
# to be processed after visiting low
def findJumpLength(low):
 
    # Stores smallest index of
    # the subset where low present
    p = findParent(low);
 
    # Stores next index
    # to be processed
    nextIndex = last[p] + 1;
     
    # Stores difference between
    # low and nextIndex
    jump = (nextIndex - low);
     
    # Return jump
    return jump;
 
# Function to create a new subset
def newUnion(low, high,N):
 
    # Iterate over
    # the range [low + 1, high]
    for i in range(low+1,high+1):
     
        # Perform union operation
        # on low
        union(low, i);
     
    # If just smaller element of low
    # is present in any of the subset
    if (low > 0 and visited[low - 1]):
       
        # Perform union on (low - 1)
        union(low - 1, low);
     
    # If just greater element of high
    # is present in any of the subset
    if (high < N - 1 and visited[high + 1]):
       
        # Perform union on high
        union(high, high + 1);
     
# Function to find the smallest
# element of the subset
def findParent(u):
 
    # Base Case
    if (parent[u] == u):
        return u;
       
    # Stores smallest element
    # of parent[u
    parent[u]= findParent(parent[u]);
    return parent[u]
 
# Function to perform union operation
def union(u, v):
 
    # Stores smallest element
    # of subset containing u
    p1 = findParent(u);
     
    # Stores smallest element
    # of subset containing u
    p2 = findParent(v);
     
    # Update parent[p2]
    parent[p2] = p1;
     
    # Update last[p1]
    last[p1] = last[p2];
 
# Function to find all the queries
def getQueries():
 
    # Stores all the queries
    Q = []
         
    # Initialize all queries
    query1 = [ 1, 0, 3, 3, 2,1, 11 ]
    query2 = [ 2, 3 ]
    query3 = [ 1, 2, 3, 5, 7 ]
    query4 = [ 2, 2 ]
     
    # Insert all queries        
    Q.append(query1)
    Q.append(query2)
    Q.append(query3)
    Q.append(query4)
     
    # Return all queries
    return Q;
 
# Driver Code
if __name__=='__main__':
 
    arr = [ 3, 10, 4, 2, 8, 7 ]
    N = len(arr)
    P = 1;
    parent = [i for i in range(N)]
    last = [i for i in range(N)]
    count = [0 for i in range(N)]
    visited = [False for i in range(N)]
     
    Q = getQueries();
    processQueries(arr, P, Q);
 
    # This code is contributed by rutvik_56.

C#

// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
public class GFG {
 
    // visited[i]: Check index i is present
    // in any disjoint subset or not.
    static bool[] visited;
 
    // Store the smallest element
    // of each disjoint subset
    static int[] parent;
 
    // count[i]: Stores the count
    // of replacements of arr[i]
    static int[] last;
 
    // Store the largest element
    // of each disjoint subset
    static int[] count;
 
    // Function to process all the given Queries
    static void processQueries(int[] arr, int P,
                               List<List<int> > Q)
    {
       
        // Traverse the [,]queries array
        for (int i = 0; i < Q.Count; i++) {
 
            // Stores the current query
            List<int> query = Q[i];
 
            // If query of type is 1
            if (query[0] == 1) {
 
                // Perform the query of type 1
                processTypeOneQuery(query, arr, P);
            }
 
            // If query of type is 2
            else {
 
                // Stores 2nd element of
                // current query
                int index = query[1];
 
                // Print arr[index]
                Console.WriteLine(arr[index]);
            }
        }
    }
 
    // Function to perform the query of type 1
    static void processTypeOneQuery(
        List<int> query, int[] arr, int P)
    {
        // Stores the value of L
        int low = query[1];
 
        // Stores the value of R
        int high = query[2];
 
        // Stores leftmost index of the
        // subarray for which a new
        // subset can be generated
        int left = -1;
 
        // Stores index of
        // the query[] array
        int j = 3;
 
        // Iterate over the
        // range [low, high]
        while (low <= high) {
 
            // If low is present in
            // any of the subset
            if (visited[low]) {
 
                // If no subset created for
                // the subarray arr[left...low - 1]
                if (left != -1) {
 
                    // Create a new subset
                    newUnion(left, low - 1,
                             arr.Length);
 
                    // Update left
                    left = -1;
                }
 
                // Stores next index to be
                // processed
                int jump = findJumpLength(low);
 
                // Update low
                low += jump;
 
                // Update j
                j += jump;
            }
 
            // If arr[low] has been
            // already replaced P times
            else if (count[low] == P) {
 
                // If already subset
                // created for left
                if (left == -1) {
 
                    // Update left
                    left = low;
                }
 
                // Mark low as an element
                // of any subset
                visited[low] = true;
 
                // Update low
                low++;
 
                // Update j
                j++;
            }
 
            // If arr[low] has been replaced
            // less than P times
            else {
 
                // If no subset created for
                // the subarray arr[left...low - 1]
                if (left != -1) {
 
                    // Create a new subset
                    newUnion(left, low - 1, arr.Length);
 
                    // Update left
                    left = -1;
                }
 
                // Replace arr[low] with
                // the corresponding value
                arr[low] = query[j];
 
                // Update count[low]
                count[low]++;
 
                // Update low
                low++;
 
                // Update j
                j++;
            }
        }
 
        // If no subset has been created for
        // the subarray arr[left...low - 1]
        if (left != -1) {
 
            // Create a new subset
            newUnion(left, high, arr.Length);
        }
    }
 
    // Function to find the next index
    // to be processed after visiting low
    static int findJumpLength(int low)
    {
 
        // Stores smallest index of
        // the subset where low present
        int p = findParent(low);
 
        // Stores next index
        // to be processed
        int nextIndex = last[p] + 1;
 
        // Stores difference between
        // low and nextIndex
        int jump = (nextIndex - low);
 
        // Return jump
        return jump;
    }
 
    // Function to create a new subset
    static void newUnion(int low, int high,
                         int N)
    {
 
        // Iterate over
        // the range [low + 1, high]
        for (int i = low + 1; i <= high;
             i++) {
 
            // Perform union operation
            // on low
            union(low, i);
        }
 
        // If just smaller element of low
        // is present in any of the subset
        if (low > 0 && visited[low - 1]) {
 
            // Perform union on (low - 1)
            union(low - 1, low);
        }
 
        // If just greater element of high
        // is present in any of the subset
        if (high < N - 1 && visited[high + 1]) {
 
            // Perform union on high
            union(high, high + 1);
        }
    }
 
    // Function to find the smallest
    // element of the subset
    static int findParent(int u)
    {
 
        // Base Case
        if (parent[u] == u)
            return u;
 
        // Stores smallest element
        // of parent[u
        return parent[u]
            = findParent(parent[u]);
    }
 
    // Function to perform union operation
    static void union(int u, int v)
    {
        // Stores smallest element
        // of subset containing u
        int p1 = findParent(u);
 
        // Stores smallest element
        // of subset containing u
        int p2 = findParent(v);
 
        // Update parent[p2]
        parent[p2] = p1;
 
        // Update last[p1]
        last[p1] = last[p2];
    }
 
    // Function to find all the queries
    static List<List<int> > getQueries()
    {
 
        // Stores all the queries
        List<List<int> > Q
            = new List<List<int> >();
 
        // Initialize all queries
        int[] query1 = { 1, 0, 3, 3, 2,
                             1, 11 };
        int[] query2 = { 2, 3 };
        int[] query3 = { 1, 2, 3, 5, 7 };
        int[] query4 = { 2, 2 };
 
        // Insert all queries        
        Q.Add(new List<int>(query1));
        Q.Add(new List<int>(query2));
        Q.Add(new List<int>(query3));
        Q.Add(new List<int>(query4));
 
        // Return all queries
        return Q;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
 
        int[] arr = { 3, 10, 4, 2, 8, 7 };
        int N = arr.Length;
        int P = 1;
 
        parent = new int[N];
        last = new int[N];
        count = new int[N];
        visited = new bool[N];
 
        // Initialize parent[] and
        // last[] array
        for (int i = 0; i < parent.Length;
             i++) {
 
            // Update parent[i]
            parent[i] = i;
 
            // Update last[i]
            last[i] = i;
        }
 
        List<List<int> > Q = getQueries();
        processQueries(arr, P, Q);
    }
}
 
// This code is contributed by Amit Katiyar
Producción: 

11
1

 

Complejidad temporal: O(N + |Q| * P)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por jithin y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *