Dada una array binaria × m, cuente el número de conjuntos donde un conjunto puede estar formado por uno o más valores iguales en una fila o columna.
Ejemplos:
Input: 1 0 1 0 1 0 Output: 8 Explanation: There are six one-element sets (three 1s and three 0s). There are two two- element sets, the first one consists of the first and the third cells of the first row. The second one consists of the first and the third cells of the second row. Input: 1 0 1 1 Output: 6
El número de subconjuntos no vacíos de elementos x es 2 x – 1. Recorremos cada fila y calculamos números de celdas de 1 y 0. Por cada u ceros y v unos, los conjuntos totales son 2 u – 1 + 2 v – 1. Luego recorremos todas las columnas y calculamos los mismos valores y calculamos la suma total. Finalmente, restamos mxn de la suma total, ya que los elementos individuales se consideran dos veces.
Implementación:
CPP
// CPP program to compute number of sets // in a binary matrix. #include <bits/stdc++.h> using namespace std; const int m = 3; // no of columns const int n = 2; // no of rows // function to calculate the number of // non empty sets of cell long long countSets(int a[n][m]) { // stores the final answer long long res = 0; // traverses row-wise for (int i = 0; i < n; i++) { int u = 0, v = 0; for (int j = 0; j < m; j++) a[i][j] ? u++ : v++; res += pow(2,u)-1 + pow(2,v)-1; } // traverses column wise for (int i = 0; i < m; i++) { int u = 0, v = 0; for (int j = 0; j < n; j++) a[j][i] ? u++ : v++; res += pow(2,u)-1 + pow(2,v)-1; } // at the end subtract n*m as no of // single sets have been added twice. return res-(n*m); } // driver program to test the above function. int main() { int a[][3] = {(1, 0, 1), (0, 1, 0)}; cout << countSets(a); return 0; }
Java
// Java program to compute number of sets // in a binary matrix. class GFG { static final int m = 3; // no of columns static final int n = 2; // no of rows // function to calculate the number of // non empty sets of cell static long countSets(int a[][]) { // stores the final answer long res = 0; // traverses row-wise for (int i = 0; i < n; i++) { int u = 0, v = 0; for (int j = 0; j < m; j++) { if (a[i][j] == 1) u++; else v++; } res += Math.pow(2, u) - 1 + Math.pow(2, v) - 1; } // traverses column wise for (int i = 0; i < m; i++) { int u = 0, v = 0; for (int j = 0; j < n; j++) { if (a[j][i] == 1) u++; else v++; } res += Math.pow(2, u) - 1 + Math.pow(2, v) - 1; } // at the end subtract n*m as no of // single sets have been added twice. return res - (n * m); } // Driver code public static void main(String[] args) { int a[][] = {{1, 0, 1}, {0, 1, 0}}; System.out.print(countSets(a)); } } // This code is contributed by Anant Agarwal.
Python3
# Python3 program to compute number of sets # in a binary matrix. m = 3 # no of columns n = 2 # no of rows # function to calculate the number of # non empty sets of cell def countSets(a): # stores the final answer res = 0 # traverses row-wise for i in range(n): u = 0 v = 0 for j in range(m): if a[i][j]: u += 1 else: v += 1 res += pow(2, u) - 1 + pow(2, v) - 1 # traverses column wise for i in range(m): u = 0 v = 0 for j in range(n): if a[j][i]: u += 1 else: v += 1 res += pow(2, u) - 1 + pow(2, v) - 1 # at the end subtract n*m as no of # single sets have been added twice. return res - (n*m) # Driver program to test the above function. a = [[1, 0, 1],[0, 1, 0]] print(countSets(a)) # This code is contributed by shubhamsingh10
C#
// C# program to compute number of // sets in a binary matrix. using System; class GFG { static int m = 3; // no of columns static int n = 2; // no of rows // function to calculate the number of // non empty sets of cell static long countSets(int [,]a) { // stores the final answer long res = 0; // Traverses row-wise for (int i = 0; i < n; i++) { int u = 0, v = 0; for (int j = 0; j < m; j++) { if (a[i,j] == 1) u++; else v++; } res += (long)(Math.Pow(2, u) - 1 + Math.Pow(2, v)) - 1; } // Traverses column wise for (int i = 0; i < m; i++) { int u = 0, v = 0; for (int j = 0; j < n; j++) { if (a[j,i] == 1) u++; else v++; } res += (long)(Math.Pow(2, u) - 1 + Math.Pow(2, v)) - 1; } // at the end subtract n*m as no of // single sets have been added twice. return res - (n * m); } // Driver code public static void Main() { int [,]a = {{1, 0, 1}, {0, 1, 0}}; Console.WriteLine(countSets(a)); } } // This code is contributed by vt_m.
PHP
<?php // PHP program to compute // number of sets // in a binary matrix. // no of columns $m = 3; // no of rows $n = 2; // function to calculate the number // of non empty sets of cell function countSets($a) { global $m, $n; // stores the final answer $res = 0; // traverses row-wise for ($i = 0; $i < $n; $i++) { $u = 0; $v = 0; for ( $j = 0; $j < $m; $j++) $a[$i][$j] ? $u++ : $v++; $res += pow(2, $u) - 1 + pow(2, $v) - 1; } // traverses column wise for ($i = 0; $i < $m; $i++) { $u = 0;$v = 0; for ($j = 0; $j < $n; $j++) $a[$j][$i] ? $u++ : $v++; $res += pow(2, $u) - 1 + pow(2, $v) - 1; } // at the end subtract // n*m as no of single // sets have been added // twice. return $res-($n*$m); } // Driver Code $a = array(array(1, 0, 1), array(0, 1, 0)); echo countSets($a); // This code is contributed by anuj_67. ?>
Javascript
<script> // javascript program to compute number of sets // in a binary matrix. var m = 3; // no of columns var n = 2; // no of rows // function to calculate the number of // non empty sets of cell function countSets(a) { // stores the final answer var res = 0; // traverses row-wise for (i = 0; i < n; i++) { var u = 0, v = 0; for (j = 0; j < m; j++) { if (a[i][j] == 1) u++; else v++; } res += Math.pow(2, u) - 1 + Math.pow(2, v) - 1; } // traverses column wise for (i = 0; i < m; i++) { var u = 0, v = 0; for (j = 0; j < n; j++) { if (a[j][i] == 1) u++; else v++; } res += Math.pow(2, u) - 1 + Math.pow(2, v) - 1; } // at the end subtract n*m as no of // single sets have been added twice. return res - (n * m); } // Driver code var a = [ [ 1, 0, 1 ], [ 0, 1, 0 ] ]; document.write(countSets(a)); // This code is contributed by Rajput-Ji </script>
8
Complejidad de tiempo: O(N*M) , ya que estamos usando bucles anidados para atravesar N*M veces.
Espacio auxiliar: O(1) , ya que no estamos utilizando ningún espacio adicional.
Este artículo es una contribución de Raj . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA