Dada una array arr[] de N enteros positivos. La tarea es escribir un programa para contar el número de elementos primos en la array dada.
Ejemplos :
Input: arr[] = {1, 3, 4, 5, 7} Output: 3 There are three primes, 3, 5 and 7 Input: arr[] = {1, 2, 3, 4, 5, 6, 7} Output: 4
Enfoque ingenuo : una solución simple es atravesar la array y seguir verificando cada elemento si es primo o no y mantener la cuenta de los elementos primos al mismo tiempo.
Enfoque eficiente : genere todos los números primos hasta el elemento máximo de la array utilizando el tamiz de Eratóstenes y guárdelos en un hash. Ahora recorra la array y encuentre el recuento de los elementos que son primos usando la tabla hash.
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to find count of // primes in given array. #include <bits/stdc++.h> using namespace std; // Function to find count of prime int primeCount(int arr[], int n) { // Find maximum value in the array int max_val = *max_element(arr, arr+n); // USE SIEVE TO FIND ALL PRIME NUMBERS LESS // THAN OR EQUAL TO max_val // Create a boolean array "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. vector<bool> prime(max_val + 1, true); // Remaining part of SIEVE prime[0] = false; prime[1] = false; for (int p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * 2; i <= max_val; i += p) prime[i] = false; } } // Find all primes in arr[] int count = 0; for (int i = 0; i < n; i++) if (prime[arr[i]]) count++; return count; } // Driver code int main() { int arr[] = { 1, 2, 3, 4, 5, 6, 7 }; int n = sizeof(arr) / sizeof(arr[0]); cout << primeCount(arr, n); return 0; }
Java
import java.util.Arrays; import java.util.Vector; // Java program to find count of // primes in given array. class GFG { // Function to find count of prime static int primeCount(int arr[], int n) { // Find maximum value in the array //.*max_element(arr, arr+n); int max_val = Arrays.stream(arr).max().getAsInt(); // USE SIEVE TO FIND ALL PRIME NUMBERS LESS // THAN OR EQUAL TO max_val // Create a boolean array "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. Boolean[] prime = new Boolean[max_val + 1]; for (int i = 0; i < max_val + 1; i++) { prime[i] = true; } // Remaining part of SIEVE prime[0] = false; prime[1] = false; for (int p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * 2; i <= max_val; i += p) { prime[i] = false; } } } // Find all primes in arr[] int count = 0; for (int i = 0; i < n; i++) { if (prime[arr[i]]) { count++; } } return count; } // Driver code public static void main(String[] args) { int arr[] = {1, 2, 3, 4, 5, 6, 7}; int n = arr.length; System.out.println(primeCount(arr, n)); } } // This code is contributed by // PrinciRaj1992
Python3
# Python 3 program to find count of # primes in given array. from math import sqrt # Function to find count of prime def primeCount(arr, n): # Find maximum value in the array max_val = arr[0]; for i in range(len(arr)): if(arr[i] > max_val): max_val = arr[i] # USE SIEVE TO FIND ALL PRIME NUMBERS # LESS THAN OR EQUAL TO max_val # Create a boolean array "prime[0..n]". # A value in prime[i] will finally be # false if i is Not a prime, else true. prime =[ True for i in range(max_val + 1)] # Remaining part of SIEVE prime[0] = False prime[1] = False k = int(sqrt(max_val)) + 1 for p in range(2, k, 1): # If prime[p] is not changed, # then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * 2, max_val + 1, p): prime[i] = False # Find all primes in arr[] count = 0 for i in range(0, n, 1): if (prime[arr[i]]): count += 1 return count # Driver code if __name__ == '__main__': arr = [1, 2, 3, 4, 5, 6, 7] n = len(arr) print(primeCount(arr, n)) # This code is contributed by # Shashank_Sharma
C#
// C# program to find count of // primes in given array. using System; using System.Linq; class GFG { // Function to find count of prime static int primeCount(int []arr, int n) { // Find maximum value in the array //.*max_element(arr, arr+n); int max_val = arr.Max(); // USE SIEVE TO FIND ALL PRIME NUMBERS LESS // THAN OR EQUAL TO max_val // Create a boolean array "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. Boolean[] prime = new Boolean[max_val + 1]; for (int i = 0; i < max_val + 1; i++) { prime[i] = true; } // Remaining part of SIEVE prime[0] = false; prime[1] = false; for (int p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * 2; i <= max_val; i += p) { prime[i] = false; } } } // Find all primes in arr[] int count = 0; for (int i = 0; i < n; i++) { if (prime[arr[i]]) { count++; } } return count; } // Driver code public static void Main() { int []arr = {1, 2, 3, 4, 5, 6, 7}; int n = arr.Length; Console.WriteLine(primeCount(arr, n)); } } //This code is contributed by 29AjayKumar
PHP
<?php // PHP program to find count // of primes in given array. // Function to find count of prime function primeCount($arr, $n) { // Find maximum value in the array $max_val = max($arr); // Use Sieve to find all Prime Numbers // less than or equal to max_val // Create a boolean array "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. $prime = array_fill(0, $max_val + 1, true); // Remaining part of SIEVE $prime[0] = false; $prime[1] = false; for ($p = 2; $p * $p <= $max_val; $p++) { // If prime[p] is not changed, // then it is a prime if ($prime[$p] == true) { // Update all multiples of p for ($i = $p * 2; $i <= $max_val; $i += $p) $prime[$i] = false; } } // Find all primes in arr[] $count = 0; for ($i = 0; $i < $n; $i++) if ($prime[$arr[$i]]) $count++; return $count; } // Driver code $arr = array(1, 2, 3, 4, 5, 6, 7 ); $n = sizeof($arr); echo primeCount($arr, $n); // This code is contributed by mits ?>
Javascript
<script> // Javascript program to find count // of primes in given array. // Function to find count of prime function primeCount(arr, n) { // Find maximum value in the array let max_val = arr.sort((a, b) => b - a)[0]; // Use Sieve to find all Prime Numbers // less than or equal to max_val // Create a boolean array "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. let prime = new Array(max_val + 1).fill(true); // Remaining part of SIEVE prime[0] = false; prime[1] = false; for (let p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true) { // Update all multiples of p for (let i = p * 2; i <= max_val; i += p) prime[i] = false; } } // Find all primes in arr[] let count = 0; for (let i = 0; i < n; i++) if (prime[arr[i]]) count++; return count; } // Driver code let arr = new Array(1, 2, 3, 4, 5, 6, 7 ); let n = arr.length; document.write(primeCount(arr, n)); // This code is contributed by _saurabh_jaiswal </script>
Producción:
4