Cuente el número de trillizos con un producto igual al número dado | conjunto 2

Dada una array de enteros distintos (considerando solo números positivos) y un número ‘m’, encuentre el número de tripletes con el producto igual a ‘m’.
Ejemplos:

Input: arr[] = { 1, 4, 6, 2, 3, 8}  
            m = 24
Output: 3

Input: arr[] = { 0, 4, 6, 2, 3, 8}  
            m = 18
Output: 0

Ya se ha discutido un enfoque con O (n) espacio adicional en una publicación anterior . En esta publicación se discutirá un enfoque con complejidad espacial O(1).
Enfoque: La idea es utilizar la técnica de los tres puntos:

  1. Ordenar la array de entrada.
  2. Fije el primer elemento como A[i] donde i es de 0 a tamaño de array – 2.
  3. Después de arreglar el primer elemento del triplete, encuentre los otros dos elementos usando la técnica de 2 punteros.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count such triplets
int countTriplets(int arr[], int n, int m)
{
    int count = 0;
 
    // Sort the array
    sort(arr, arr + n);
    int end, start, mid;
 
    // three pointer technique
    for (end = n - 1; end >= 2; end--) {
        int start = 0, mid = end - 1;
        while (start < mid) {
 
            // Calculate the product of a triplet
            long int prod = arr[end] * arr[start] * arr[mid];
 
            // Check if that product is greater than m,
            // decrement mid
            if (prod > m)
                mid--;
 
            // Check if that product is smaller than m,
            // increment start
            else if (prod < m)
                start++;
 
            // Check if that product is equal to m,
            // decrement mid, increment start and
            // increment the count of pairs
            else if (prod == m) {
                count++;
                mid--;
                start++;
            }
        }
    }
 
    return count;
}
 
// Drivers code
int main()
{
    int arr[] = { 1, 1, 1, 1, 1, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int m = 1;
 
    cout << countTriplets(arr, n, m);
 
    return 0;
}

Java

// Java implementation of
// above approach
import java.io.*;
import java.util.*;
 
class GFG
{
 
// Function to count such triplets
static int countTriplets(int arr[],
                         int n, int m)
{
    int count = 0;
 
    // Sort the array
    Arrays.sort(arr);
    int end, start, mid;
 
    // three pointer technique
    for (end = n - 1; end >= 2; end--)
    {
        start = 0; mid = end - 1;
        while (start < mid)
        {
 
            // Calculate the product
            // of a triplet
            long prod = arr[end] *
                        arr[start] *
                        arr[mid];
 
            // Check if that product
            // is greater than m,
            // decrement mid
            if (prod > m)
                mid--;
 
            // Check if that product
            // is smaller than m,
            // increment start
            else if (prod < m)
                start++;
 
            // Check if that product is equal
            // to m, decrement mid, increment
            // start and increment the
            // count of pairs
            else if (prod == m)
            {
                count++;
                mid--;
                start++;
            }
        }
    }
 
    return count;
}
 
// Driver code
public static void main (String[] args)
{
    int []arr = { 1, 1, 1, 1, 1, 1 };
    int n = arr.length;
    int m = 1;
     
    System.out.println(countTriplets(arr, n, m));
}
}
 
// This code is contributed
// by inder_verma.

Python3

# Python3 implementation
# of above approach
 
# Function to count such triplets
def countTriplets(arr, n, m):
 
    count = 0
 
    # Sort the array
    arr.sort()
 
    # three pointer technique
    for end in range(n - 1, 1, -1) :
        start = 0
        mid = end - 1
        while (start < mid) :
 
            # Calculate the product
            # of a triplet
            prod = (arr[end] *
                    arr[start] * arr[mid])
 
            # Check if that product is
            # greater than m, decrement mid
            if (prod > m):
                mid -= 1
 
            # Check if that product is
            # smaller than m, increment start
            elif (prod < m):
                start += 1
 
            # Check if that product is equal
            # to m, decrement mid, increment
            # start and increment the count
            # of pairs
            elif (prod == m):
                count += 1
                mid -= 1
                start += 1
 
    return count
 
# Drivers code
if __name__ == "__main__":
    arr = [ 1, 1, 1, 1, 1, 1 ]
    n = len(arr)
    m = 1
 
    print(countTriplets(arr, n, m))
 
# This code is contributed
# by ChitraNayal

C#

// C# implementation of above approach
using System;
 
class GFG
{
 
// Function to count such triplets
static int countTriplets(int []arr,
                         int n, int m)
{
    int count = 0;
 
    // Sort the array
    Array.Sort(arr);
    int end, start, mid;
 
    // three pointer technique
    for (end = n - 1; end >= 2; end--)
    {
        start = 0; mid = end - 1;
        while (start < mid)
        {
 
            // Calculate the product
            // of a triplet
            long prod = arr[end] *
                        arr[start] *
                        arr[mid];
 
            // Check if that product
            // is greater than m,
            // decrement mid
            if (prod > m)
                mid--;
 
            // Check if that product
            // is smaller than m,
            // increment start
            else if (prod < m)
                start++;
 
            // Check if that product
            // is equal to m,
            // decrement mid, increment
            // start and increment the
            // count of pairs
            else if (prod == m)
            {
                count++;
                mid--;
                start++;
            }
        }
    }
 
    return count;
}
 
// Driver code
public static void Main (String []args)
{
    int []arr = { 1, 1, 1, 1, 1, 1 };
    int n = arr.Length;
    int m = 1;
     
    Console.WriteLine(countTriplets(arr, n, m));
}
}
 
// This code is contributed
// by Arnab Kundu

PHP

<?php
// PHP  implementation of above approach
 
// Function to count such triplets
 
function  countTriplets($arr, $n, $m)
{
     $count = 0;
 
    // Sort the array
    sort($arr);
    $end; $start; $mid;
 
    // three pointer technique
    for ($end = $n - 1; $end >= 2; $end--) {
         $start = 0;
         $mid = $end - 1;
        while ($start < $mid) {
 
            // Calculate the product of a triplet
            $prod = $arr[$end] * $arr[$start] * $arr[$mid];
 
            // Check if that product is greater than m,
            // decrement mid
            if ($prod > $m)
                $mid--;
 
            // Check if that product is smaller than m,
            // increment start
            else if ($prod < $m)
                $start++;
 
            // Check if that product is equal to m,
            // decrement mid, increment start and
            // increment the count of pairs
            else if ($prod == $m) {
                $count++;
                $mid--;
                $start++;
            }
        }
    }
 
    return $count;
}
 
// Drivers code
  
    $arr = array( 1, 1, 1, 1, 1, 1 );
     $n = sizeof($arr) / sizeof($arr[0]);
    $m = 1;
 
    echo  countTriplets($arr, $n, $m);
 
 
#This Code is Contributed by ajit
?>

Javascript

<script>
 
    // Javascript implementation of above approach
     
    // Function to count such triplets
    function countTriplets(arr, n, m)
    {
        let count = 0;
 
        // Sort the array
        arr.sort(function(a, b){return a - b});
        let end, start, mid;
 
        // three pointer technique
        for (end = n - 1; end >= 2; end--)
        {
            start = 0; mid = end - 1;
            while (start < mid)
            {
 
                // Calculate the product
                // of a triplet
                let prod = arr[end] * arr[start] * arr[mid];
 
                // Check if that product
                // is greater than m,
                // decrement mid
                if (prod > m)
                    mid--;
 
                // Check if that product
                // is smaller than m,
                // increment start
                else if (prod < m)
                    start++;
 
                // Check if that product
                // is equal to m,
                // decrement mid, increment
                // start and increment the
                // count of pairs
                else if (prod == m)
                {
                    count++;
                    mid--;
                    start++;
                }
            }
        }
 
        return count;
    }
     
    let arr = [ 1, 1, 1, 1, 1, 1 ];
    let n = arr.length;
    let m = 1;
       
    document.write(countTriplets(arr, n, m));
 
</script>
Producción: 

6

Complejidad temporal: O(N^2) 
Complejidad espacial: O(1)
 

Publicación traducida automáticamente

Artículo escrito por agnivakolay y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *