Dado un árbol de n Nodes pares. La tarea es encontrar el número máximo de bordes que se eliminarán del árbol dado para obtener un bosque de árboles que tenga un número par de Nodes. Este problema siempre se puede resolver ya que el gráfico dado tiene Nodes pares.
Ejemplos:
Input : n = 10 Edge 1: 1 3 Edge 2: 1 6 Edge 3: 1 2 Edge 4: 3 4 Edge 5: 6 8 Edge 6: 2 7 Edge 7: 2 5 Edge 8: 4 9 Edge 9: 4 10 Output : 2 By removing 2 edges we can obtain the forest with even node tree.
Dotted line shows removed edges. Any further removal of edge will not satisfy the even nodes condition.
Encuentre un subárbol con un número par de Nodes y elimínelo del resto del árbol eliminando el borde que lo conecta. Después de la eliminación, nos queda un árbol con un Node par solo porque inicialmente tenemos un número par de Nodes en el árbol y el subárbol eliminado también tiene un Node par. Repita el mismo procedimiento hasta que nos quedemos con el árbol que no se puede descomponer más de esta manera.
Para hacer esto, la idea es usar Depth First Search para atravesar el árbol. Implemente la función DFS de tal manera que devolverá la cantidad de Nodes en el subárbol cuya raíz es el Node en el que se realiza DFS. Si el número de Nodes es par, elimine el borde, de lo contrario, ignore.
A continuación se muestra la implementación de este enfoque:
C++
// C++ program to find maximum number to be removed // to convert a tree into forest containing trees of // even number of nodes #include<bits/stdc++.h> #define N 12 using namespace std; // Return the number of nodes of subtree having // node as a root. int dfs(vector<int> tree[N], int visit[N], int *ans, int node) { int num = 0, temp = 0; // Mark node as visited. visit[node] = 1; // Traverse the adjacency list to find non- // visited node. for (int i = 0; i < tree[node].size(); i++) { if (visit[tree[node][i]] == 0) { // Finding number of nodes of the subtree // of a subtree. temp = dfs(tree, visit, ans, tree[node][i]); // If nodes are even, increment number of // edges to removed. // Else leave the node as child of subtree. (temp%2)?(num += temp):((*ans)++); } } return num+1; } // Return the maximum number of edge to remove // to make forest. int minEdge(vector<int> tree[N], int n) { int visit[n+2]; int ans = 0; memset(visit, 0, sizeof visit); dfs(tree, visit, &ans, 1); return ans; } // Driven Program int main() { int n = 10; vector<int> tree[n+2]; tree[1].push_back(3); tree[3].push_back(1); tree[1].push_back(6); tree[6].push_back(1); tree[1].push_back(2); tree[2].push_back(1); tree[3].push_back(4); tree[4].push_back(3); tree[6].push_back(8); tree[8].push_back(6); tree[2].push_back(7); tree[7].push_back(2); tree[2].push_back(5); tree[5].push_back(2); tree[4].push_back(9); tree[9].push_back(4); tree[4].push_back(10); tree[10].push_back(4); cout << minEdge(tree, n) << endl; return 0; }
Java
// Java program to find maximum number to be removed // to convert a tree into forest containing trees of // even number of nodes import java.util.*; class GFG { static int N = 12,ans; static Vector<Vector<Integer>> tree=new Vector<Vector<Integer>>(); // Return the number of nodes of subtree having // node as a root. static int dfs( int visit[], int node) { int num = 0, temp = 0; // Mark node as visited. visit[node] = 1; // Traverse the adjacency list to find non- // visited node. for (int i = 0; i < tree.get(node).size(); i++) { if (visit[tree.get(node).get(i)] == 0) { // Finding number of nodes of the subtree // of a subtree. temp = dfs( visit, tree.get(node).get(i)); // If nodes are even, increment number of // edges to removed. // Else leave the node as child of subtree. if(temp%2!=0) num += temp; else ans++; } } return num+1; } // Return the maximum number of edge to remove // to make forest. static int minEdge( int n) { int visit[] = new int[n+2]; ans = 0; dfs( visit, 1); return ans; } // Driven Program public static void main(String args[]) { int n = 10; //set the size of vector for(int i = 0; i < n + 2;i++) tree.add(new Vector<Integer>()); tree.get(1).add(3); tree.get(3).add(1); tree.get(1).add(6); tree.get(6).add(1); tree.get(1).add(2); tree.get(2).add(1); tree.get(3).add(4); tree.get(4).add(3); tree.get(6).add(8); tree.get(8).add(6); tree.get(2).add(7); tree.get(7).add(2); tree.get(2).add(5); tree.get(5).add(2); tree.get(4).add(9); tree.get(9).add(4); tree.get(4).add(10); tree.get(10).add(4); System.out.println( minEdge( n)); } } // This code is contributed by Arnab Kundu
Python3
# Python3 program to find maximum # number to be removed to convert # a tree into forest containing trees # of even number of nodes # Return the number of nodes of # subtree having node as a root. def dfs(tree, visit, ans, node): num = 0 temp = 0 # Mark node as visited. visit[node] = 1 # Traverse the adjacency list # to find non-visited node. for i in range(len(tree[node])): if (visit[tree[node][i]] == 0): # Finding number of nodes of # the subtree of a subtree. temp = dfs(tree, visit, ans, tree[node][i]) # If nodes are even, increment # number of edges to removed. # Else leave the node as child # of subtree. if(temp % 2): num += temp else: ans[0] += 1 return num + 1 # Return the maximum number of # edge to remove to make forest. def minEdge(tree, n): visit = [0] * (n + 2) ans = [0] dfs(tree, visit, ans, 1) return ans[0] # Driver Code N = 12 n = 10 tree = [[] for i in range(n + 2)] tree[1].append(3) tree[3].append(1) tree[1].append(6) tree[6].append(1) tree[1].append(2) tree[2].append(1) tree[3].append(4) tree[4].append(3) tree[6].append(8) tree[8].append(6) tree[2].append(7) tree[7].append(2) tree[2].append(5) tree[5].append(2) tree[4].append(9) tree[9].append(4) tree[4].append(10) tree[10].append(4) print(minEdge(tree, n)) # This code is contributed by pranchalK
C#
// C# program to find maximum number // to be removed to convert a tree into // forest containing trees of even number of nodes using System; using System.Collections.Generic; class GFG { static int N = 12, ans; static List<List<int>> tree = new List<List<int>>(); // Return the number of nodes of // subtree having node as a root. static int dfs(int []visit, int node) { int num = 0, temp = 0; // Mark node as visited. visit[node] = 1; // Traverse the adjacency list to // find non-visited node. for (int i = 0; i < tree[node].Count; i++) { if (visit[tree[node][i]] == 0) { // Finding number of nodes of the // subtree of a subtree. temp = dfs(visit, tree[node][i]); // If nodes are even, increment number of // edges to removed. // Else leave the node as child of subtree. if(temp % 2 != 0) num += temp; else ans++; } } return num + 1; } // Return the maximum number of edge // to remove to make forest. static int minEdge(int n) { int []visit = new int[n + 2]; ans = 0; dfs(visit, 1); return ans; } // Driver Code public static void Main(String []args) { int n = 10; //set the size of vector for(int i = 0; i < n + 2;i++) tree.Add(new List<int>()); tree[1].Add(3); tree[3].Add(1); tree[1].Add(6); tree[6].Add(1); tree[1].Add(2); tree[2].Add(1); tree[3].Add(4); tree[4].Add(3); tree[6].Add(8); tree[8].Add(6); tree[2].Add(7); tree[7].Add(2); tree[2].Add(5); tree[5].Add(2); tree[4].Add(9); tree[9].Add(4); tree[4].Add(10); tree[10].Add(4); Console.WriteLine(minEdge(n)); } } // This code is contributed by Rajput-Ji
Javascript
<script> // JavaScript program to find maximum number // to be removed to convert a tree into // forest containing trees of even number of nodes var N = 12, ans; var tree = Array(); // Return the number of nodes of // subtree having node as a root. function dfs(visit, node) { var num = 0, temp = 0; // Mark node as visited. visit[node] = 1; // Traverse the adjacency list to // find non-visited node. for (var i = 0; i < tree[node].length; i++) { if (visit[tree[node][i]] == 0) { // Finding number of nodes of the // subtree of a subtree. temp = dfs(visit, tree[node][i]); // If nodes are even, increment number of // edges to removed. // Else leave the node as child of subtree. if(temp % 2 != 0) num += temp; else ans++; } } return num + 1; } // Return the maximum number of edge // to remove to make forest. function minEdge(n) { var visit = Array(n+2).fill(0); ans = 0; dfs(visit, 1); return ans; } // Driver Code var n = 10; //set the size of vector for(var i = 0; i < n + 2;i++) tree.push(new Array()); tree[1].push(3); tree[3].push(1); tree[1].push(6); tree[6].push(1); tree[1].push(2); tree[2].push(1); tree[3].push(4); tree[4].push(3); tree[6].push(8); tree[8].push(6); tree[2].push(7); tree[7].push(2); tree[2].push(5); tree[5].push(2); tree[4].push(9); tree[9].push(4); tree[4].push(10); tree[10].push(4); document.write(minEdge(n)); </script>
2
Complejidad temporal: O(n).
Este artículo es una contribución de Anuj Chauhan . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA