Dado un árbol binario (cada Node tiene como máximo 2 hijos) donde cada Node tiene un valor de 0 o 1 . La tarea es convertir el árbol binario dado en un árbol que tenga la propiedad OR lógico, es decir, cada valor de Node debe ser el OR lógico entre sus hijos.
Ejemplo:
Input: 1 / \ 1 0 / \ / \ 0 1 1 1 Output: 0 1 1 1 1 1 1
Explanation: Given Tree 1 / \ 1 0 / \ / \ 0 1 1 1 After Processing 1 / \ 1 1 / \ / \ 0 1 1 1
Enfoque:
La idea es atravesar el árbol binario dado en orden posterior porque en el recorrido posterior al orden, ambos hijos de la raíz ya han sido visitados antes que la raíz misma.
Para cada Node, verifique (recursivamente) si el Node tiene un hijo, entonces no tenemos ninguna necesidad de verificar si el Node tiene ambos hijos, simplemente actualice los datos del Node con la lógica O de sus datos secundarios.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ code to convert a // given binary tree to // a tree that holds // logical OR property. #include <bits/stdc++.h> using namespace std; // Structure of the binary tree struct Node { int data; struct Node* left; struct Node* right; }; // Function to create a new node struct Node* newNode(int key) { struct Node* node = new Node; node->data = key; node->left = node->right = NULL; return node; } // Convert the given tree to a // tree where each node is logical // OR of its children The main idea // is to do Postorder traversal void convertTree(Node* root) { if (root == NULL) return; // First recur on left child convertTree(root->left); // Then recur on right child convertTree(root->right); if (root->left != NULL && root->right != NULL) root->data = (root->left->data) | (root->right->data); } void printInorder(Node* root) { if (root == NULL) return; // First recurr on left child printInorder(root->left); // Then print the data of node printf("%d ", root->data); // Now recur on right child printInorder(root->right); } // Main function int main() { Node* root = newNode(1); root->left = newNode(1); root->right = newNode(0); root->left->left = newNode(0); root->left->right = newNode(1); root->right->left = newNode(1); root->right->right = newNode(1); convertTree(root); printInorder(root); return 0; }
Python
# Python program to convert a # given binary tree to # a tree that holds # logical OR property. # Function that allocates a new class newNode: # Construct to create a new node def __init__(self, key): self.data = key self.left = None self.right = None # Convert the given tree # to a tree where each node # is logical or of its children # The main idea is to do # Postorder traversal def convertTree(root) : if (root == None) : return # First recur on left child convertTree(root.left) # Then recur on right child convertTree(root.right) if (root.left and root.right): root.data \ = ((root.left.data) | (root.right.data)) def printInorder(root) : if (root == None) : return # First recur on left child printInorder(root.left) # Then print the data of node print( root.data, end = " ") # Now recur on right child printInorder(root.right) # Driver Code if __name__ == '__main__': root = newNode(0) root.left = newNode(1) root.right = newNode(0) root.left.left = newNode(0) root.left.right = newNode(1) root.right.left = newNode(1) root.right.right = newNode(1) convertTree(root) printInorder(root)
Java
// Java code to convert a // given binary tree to a // tree that holds logical // OR property. class GfG { // Structure of the binary tree static class Node { int data; Node left; Node right; } // Function to create a new node static Node newNode(int key) { Node node = new Node(); node.data = key; node.left = null; node.right = null; return node; } // Convert the given tree to // a tree where each node is // logical AND of its children // The main idea is to do // Postorder traversal static void convertTree(Node root) { if (root == null) return; // First recur on left child convertTree(root.left); // Then recur on right child convertTree(root.right); if (root.left != null && root.right != null) root.data = (root.left.data) | (root.right.data); } // Function to print inorder traversal // of the tree static void printInorder(Node root) { if (root == null) return; // First recur on left child printInorder(root.left); // Then print the data of node System.out.print(root.data + " "); // Now recur on right child printInorder(root.right); } // Driver Code public static void main(String[] args) { Node root = newNode(0); root.left = newNode(1); root.right = newNode(0); root.left.left = newNode(0); root.left.right = newNode(1); root.right.left = newNode(1); root.right.right = newNode(1); convertTree(root); printInorder(root); } }
C#
// C# code to convert a given // binary tree to a tree that // holds logical AND property. using System; class GfG { // Structure of binary tree class Node { public int data; public Node left; public Node right; } // Function to create a new node static Node newNode(int key) { Node node = new Node(); node.data = key; node.left = null; node.right = null; return node; } // Convert the given tree to a // tree where each node is logical // AND of its children The main // idea is to do Postorder traversal static void convertTree(Node root) { if (root == null) return; // First recur on left child convertTree(root.left); // Then recur on right child convertTree(root.right); if (root.left != null && root.right != null) root.data = (root.left.data) | (root.right.data); } // Function to perform the inorder // traversal static void printInorder(Node root) { if (root == null) return; // First recur on left child printInorder(root.left); // then print the data of node Console.Write(root.data + " "); // now recur on right child printInorder(root.right); } // Driver code public static void Main() { Node root = newNode(0); root.left = newNode(1); root.right = newNode(0); root.left.left = newNode(0); root.left.right = newNode(1); root.right.left = newNode(1); root.right.right = newNode(1); convertTree(root); printInorder(root); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript code to convert a given // binary tree to a tree that // holds logical AND property. // Structure of binary tree class Node { constructor() { this.data = 0; this.left = null; this.right = null; } } // Function to create a new node function newNode(key) { var node = new Node(); node.data = key; node.left = null; node.right = null; return node; } // Convert the given tree to a // tree where each node is logical // AND of its children The main // idea is to do Postorder traversal function convertTree(root) { if (root == null) return; // First recur on left child convertTree(root.left); // Then recur on right child convertTree(root.right); if (root.left != null && root.right != null) root.data = (root.left.data) | (root.right.data); } // Function to perform the inorder // traversal function printInorder(root) { if (root == null) return; // First recur on left child printInorder(root.left); // then print the data of node document.write(root.data + " "); // now recur on right child printInorder(root.right); } // Driver code var root = newNode(0); root.left = newNode(1); root.right = newNode(0); root.left.left = newNode(0); root.left.right = newNode(1); root.right.left = newNode(1); root.right.right = newNode(1); convertTree(root); printInorder(root); // This code is contributed by rrrtnx. </script>
0 1 1 1 1 1 1
Publicación traducida automáticamente
Artículo escrito por SHUBHAMSINGH10 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA