Dada la string palindrómica s , la tarea es encontrar el mínimo k , de modo que pueda cortar esta string en k+1 partes y luego unirlas de tal manera que la string final sea un palíndromo y no sea igual a la string inicial s . Si es imposible, imprima -1 .
Ejemplos:
Input : string = "civic" Output : 2 Explanation : ci | v | ic --> ic | v | ci --> icvci Input : string = "gggg" Output : -1 Input : string = "redder" Output : 1 Explanation : red | der --> der | red --> derred Input : string = "aaaasaaaa" Output : -1
Enfoque 1: se da que la cuerda palindrómica formada debe ser diferente de la cuerda dada.
Entonces, cuando nuestra string consta de n o n-1 (cuando n es impar) caracteres iguales, entonces no hay forma de obtener la respuesta. Por ejemplo –
String : "aaaasaaaa" String : "aaaa"
Las strings anteriores no pueden formar otro palíndromo que no sea el dado.
De lo contrario, corte el prefijo más largo de s de longitud l , que consta de caracteres iguales de longitud igual a l-1 . Ahora corte de manera similar el sufijo de longitud l-1 y llame a la parte restante como mid.
Ahora tenemos prefix = s[1..l] y suff = s[(n-l+1)..n] . Intercambie el prefijo y el sufijo, luego una las tres partes y manténgala en el medio como está.
prefix + mid + suffix [Tex]suffix + mid + prefix[/Tex]
Así que claramente podemos obtener la respuesta en dos cortes. Finalmente, solo tiene que verificar si es posible obtener la respuesta en un solo corte. Para eso, simplemente corte un elemento desde el final y agréguelo al frente y continúe este cambio cíclico. Durante esto, si obtenemos una string palindrómica diferente a la dada, significa que podemos obtener la respuesta en un solo corte.
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to solve the above problem #include <bits/stdc++.h> using namespace std; // Function to check if string is palindrome or not bool isPalindrome(string s) { for (int i = 0; i < s.length(); ++i) { if (s[i] != s[s.length() - i - 1]) { return false; } } return true; } // Function to check if it is possible to // get result by making just one cut bool ans(string s) { string s2 = s; for (int i = 0; i < s.length(); ++i) { // Appending last element in front s2 = s2.back() + s2; // Removing last element s2.pop_back(); // Checking whether string s2 is palindrome // and different from s. if (s != s2 && isPalindrome(s2)) { return true; } } return false; } int solve(string s) { // If length is <=3 then it is impossible if (s.length() <= 3) { return -1; } // Array to store frequency of characters int cnt[25] = {}; // Store count of characters in a array for (int i = 0; i < s.length(); i++) { cnt[s[i] - 'a']++; } // Condition for edge cases if (*max_element(cnt, cnt + 25) >= (s.length() - 1)) { return -1; } else { // Return 1 if it is possible to get palindromic // string in just one cut. // Else we can always reached in two cuttings. return (ans(s) ? 1 : 2); } } // Driver Code int main() { string s = "nolon"; cout << solve(s); return 0; }
Java
// Java program to solve the above problem import java.util.Arrays; class GFG { // Function to check if string is palindrome or not static boolean isPalindrome(String s) { for (int i = 0; i < s.length(); ++i) { if (s.charAt(i) != s.charAt(s.length() - i - 1)) { return false; } } return true; } // Function to check if it is possible to // get result by making just one cut static boolean ans(String s) { String s2 = s; for (int i = 0; i < s.length(); ++i) { // Appending last element in front s2 = s2.charAt(s2.length()-1) + s2; // Removing last element s2 = s2.substring(0,s2.length()-1); // Checking whether string s2 is palindrome // and different from s. if ((s == null ? s2 != null : !s.equals(s2)) && isPalindrome(s2)) { return true; } } return false; } static int solve(String s) { // If length is <=3 then it is impossible if (s.length() <= 3) { return -1; } // Array to store frequency of characters int cnt[] = new int[25]; // Store count of characters in a array for (int i = 0; i < s.length(); i++) { cnt[s.charAt(i) - 'a']++; } // Condition for edge cases if (Arrays.stream(cnt).max().getAsInt() >= (s.length() - 1)) { return -1; } else { // Return 1 if it is possible to get palindromic // string in just one cut. // Else we can always reached in two cuttings. return (ans(s) ? 1 : 2); } } // Driver Code public static void main(String[] args) { String s = "nolon"; System.out.println(solve(s)); } } // This code contributed by Rajput-Ji
Python3
# Python 3 program to solve the above problem # Function to check if string is palindrome or not def isPalindrome(s): for i in range(len(s)): if (s[i] != s[len(s) - i - 1]): return False return true # Function to check if it is possible to # get result by making just one cut def ans(s): s2 = s for i in range(len(s)): # Appending last element in front s2 = s2[len(s2) - 1] + s2 # Removing last element s2 = s2[0:len(s2) - 1] # Checking whether string s2 is palindrome # and different from s. if (s != s2 and isPalindrome(s2)): return True return False def solve(s): # If length is <=3 then it is impossible if (len(s) <= 3): return -1 # Array to store frequency of characters cnt = [0 for i in range(26)] # Store count of characters in a array for i in range(len(s)): cnt[ord(s[i]) - ord('a')] += 1 # Condition for edge cases max = cnt[0] for i in range(len(cnt)): if cnt[i]>max: max = cnt[i] if (max >= len(s) - 1): return -1 else: # Return 1 if it is possible to get # palindromic string in just one cut. # Else we can always reached in two cuttings. if ans(s) == True: return 1 else: return 2 # Driver Code if __name__ == '__main__': s = "nolon" print(solve(s)) # This code is contributed by # Surendra_Gangwar
C#
// C# program to solve the above problem using System; using System.Linq; class GFG { // Function to check if string is palindrome or not static bool isPalindrome(string s) { for (int i = 0; i < s.Length; ++i) { if (s[i] != s[s.Length - i - 1]) { return false; } } return true; } // Function to check if it is possible to // get result by making just one cut static bool ans(string s) { string s2 = s; for (int i = 0; i < s.Length; ++i) { // Appending last element in front s2 = s2[s2.Length-1] + s2; // Removing last element s2 = s2.Substring(0,s2.Length-1); // Checking whether string s2 is palindrome // and different from s. if ((s == null ? s2 != null : !s.Equals(s2)) && isPalindrome(s2)) { return true; } } return false; } static int solve(string s) { // If length is <=3 then it is impossible if (s.Length <= 3) { return -1; } // Array to store frequency of characters int[] cnt = new int[25]; // Store count of characters in a array for (int i = 0; i < s.Length; i++) { cnt[s[i] - 'a']++; } // Condition for edge cases if (cnt.Max() >=(s.Length - 1)) { return -1; } else { // Return 1 if it is possible to get palindromic // string in just one cut. // Else we can always reached in two cuttings. return (ans(s) ? 1 : 2); } } // Driver Code static void Main() { string s = "nolon"; Console.WriteLine(solve(s)); } } // This code contributed by mits
Javascript
<script> // JavaScript program to solve the above problem // Function to check if string is palindrome or not function isPalindrome(s) { for (let i = 0; i < s.length; ++i) { if (s[i] != s[s.length - i - 1]) { return false; } } return true; } // Function to check if it is possible to // get result by making just one cut function ans(s) { let s2 = s; for (let i = 0; i < s.length; ++i) { // Appending last element in front s2 = s2[s2.length-1] + s2; // Removing last element s2 = s2.substring(0,s2.length-1); // Checking whether string s2 is palindrome // and different from s. if ((s == null ? s2 != null : !s == (s2)) && isPalindrome(s2)) { return true; } } return false; } function solve(s) { // If length is <=3 then it is impossible if (s.length <= 3) { return -1; } // Array to store frequency of characters let cnt = new Array(25); for(let i=0;i<25;i++) cnt[i]=0; // Store count of characters in a array for (let i = 0; i < s.length; i++) { cnt[s[i].charCodeAt(0) - 'a'.charCodeAt(0)]++; } // Condition for edge cases if (Math.max(...cnt) >= (s.length - 1)) { return -1; } else { // Return 1 if it is possible to get palindromic // string in just one cut. // Else we can always reached in two cuttings. return (ans(s) ? 1 : 2); } } // Driver Code let s = "nolon"; document.write(solve(s)); // This code is contributed by rag2127 </script>
2
Complejidad del tiempo: O(N 2 )
Espacio auxiliar: O(N)
Enfoque eficiente: Nuevamente, si nuestra string consta de n o n-1 (cuando n es impar) caracteres iguales, entonces no hay forma de obtener la respuesta.
Ahora, divida este problema en dos partes, ya sea que la longitud de la string sea par o impar .
Si la longitud de la cuerda es impar , siempre tenemos un elemento central, así que solo haga 2 cortes alrededor del elemento central y divida la cuerda en tres segmentos e intercambie el primer y el tercer segmento.
Digamos que tenemos una string:
nolon --> no | l | on --> on | l | no --> onlno
Si la longitud de la cuerda es par , compruebe si la mitad de la cuerda es en sí misma una cuerda palindrómica o no.
Si es así, entonces:
- Divida una string recursivamente en dos partes y verifique si la mitad de la string resultante es un palíndromo o no.
- Si la string se volvió de longitud impar, simplemente devuelva 2.
asaasa --> as | aa | sa --> sa | aa | as --> saaaas
- Si la string resultante no es un palíndromo, devuelva 1.
toottoot --> to | ottoot --> ottoot | to --> ottootto
De lo contrario, podemos cortar esta cuerda desde el medio, formar dos segmentos e intercambiar entre sí.
Por ejemplo :
voov --> vo | ov --> ov | vo --> ovvo
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to solve the above problem #include <bits/stdc++.h> using namespace std; // Recursive function to find minimum number // of cuts if length of string is even int solveEven(string s) { // If length is odd then return 2 if (s.length() % 2 == 1) return 2; // To check if half of palindromic string // is itself a palindrome string ls = s.substr(0, s.length() / 2); string rs = s.substr(s.length() / 2, s.length()); // If not then return 1 if (ls != rs) return 1; // Else call function with half palindromic string return solveEven(ls); } // Function to find minimum number of cuts // If length of string is odd int solveOdd(string s) { return 2; } int solve(string s) { // If length is <=3 then it is impossible if (s.length() <= 3) { return -1; } // Array to store frequency of characters int cnt[25] = {}; // Store count of characters in a array for (int i = 0; i < s.length(); i++) { cnt[s[i] - 'a']++; } // Condition for edge cases if (*max_element(cnt, cnt + 25) >= s.length() - 1) { return -1; } // If length is even if (s.length() % 2 == 0) return solveEven(s); // If length is odd if (s.length() % 2 == 1) return solveOdd(s); } // Driver Code int main() { string s = "nolon"; cout << solve(s); return 0; }
Java
// Java program to solve the above problem import java.util.Arrays; class GFG { // Recursive function to find minimum number // of cuts if length of String is even static int solveEven(String s) { // If length is odd then return 2 if (s.length() % 2 == 1) { return 2; } // To check if half of palindromic String // is itself a palindrome String ls = s.substring(0, s.length() / 2); String rs = s.substring(s.length() / 2, s.length()); // If not then return 1 if (ls != rs) { return 1; } // Else call function with half palindromic String return solveEven(ls); } // Function to find minimum number of cuts // If length of String is odd static int solveOdd(String s) { return 2; } static int solve(String s) { // If length is <=3 then it is impossible if (s.length() <= 3) { return -1; } // Array to store frequency of characters int cnt[] = new int[25]; // Store count of characters in a array for (int i = 0; i < s.length(); i++) { cnt[s.charAt(i) - 'a']++; } // Condition for edge cases if (Arrays.stream(cnt).max().getAsInt() >= s.length() - 1) { return -1; } // If length is even if (s.length() % 2 == 0) { return solveEven(s); } // If length is odd if (s.length() % 2 == 1) { return solveOdd(s); } return Integer.MIN_VALUE; } // Driver Code public static void main(String[] args) { String s = "nolon"; System.out.println(solve(s)); } } // This code has been contributed by 29AjayKumar
Python3
# Python3 program to solve the above problem # Recursive function to find minimum number # of cuts if length of string is even def solveEven(s): # If length is odd then return 2 if len(s) % 2 == 1: return 2 # To check if half of palindromic # string is itself a palindrome ls = s[0 : len(s) // 2] rs = s[len(s) // 2 : len(s)] # If not then return 1 if ls != rs: return 1 # Else call function with # half palindromic string return solveEven(ls) # Function to find minimum number of cuts # If length of string is odd def solveOdd(s): return 2 def solve(s): # If length is <=3 then it is impossible if len(s) <= 3: return -1 # Array to store frequency of characters cnt = [0] * 25 # Store count of characters in a array for i in range(0, len(s)): cnt[ord(s[i]) - ord('a')] += 1 # Condition for edge cases if max(cnt) >= len(s) - 1: return -1 # If length is even if len(s) % 2 == 0: return solveEven(s) # If length is odd if len(s) % 2 == 1: return solveOdd(s) # Driver Code if __name__ == "__main__": s = "nolon" print(solve(s)) # This code is contributed by Rituraj Jain
C#
// C# program to solve the above problem using System; using System.Linq; class GFG { // Recursive function to find minimum number // of cuts if length of String is even static int solveEven(String s) { // If length is odd then return 2 if (s.Length % 2 == 1) { return 2; } // To check if half of palindromic String // is itself a palindrome String ls = s.Substring(0, s.Length / 2); String rs = s.Substring(s.Length / 2, s.Length); // If not then return 1 if (ls != rs) { return 1; } // Else call function with half palindromic String return solveEven(ls); } // Function to find minimum number of cuts // If length of String is odd static int solveOdd(String s) { return 2; } static int solve(String s) { // If length is <=3 then it is impossible if (s.Length <= 3) { return -1; } // Array to store frequency of characters int []cnt = new int[25]; // Store count of characters in a array for (int i = 0; i < s.Length; i++) { cnt[s[i] - 'a']++; } // Condition for edge cases if (cnt.Max() >= s.Length - 1) { return -1; } // If length is even if (s.Length % 2 == 0) { return solveEven(s); } // If length is odd if (s.Length % 2 == 1) { return solveOdd(s); } return int.MinValue; } // Driver Code public static void Main() { String s = "nolon"; Console.WriteLine(solve(s)); } } /* This code contributed by PrinciRaj1992 */
Javascript
<script> // Javascript program to solve the above problem // Recursive function to find minimum number // of cuts if length of String is even function solveEven(s) { // If length is odd then return 2 if (s.length % 2 == 1) { return 2; } // To check if half of palindromic String // is itself a palindrome let ls = s.substring(0, s.length / 2); let rs = s.substring(s.length / 2, s.length); // If not then return 1 if (ls != rs) { return 1; } // Else call function with half palindromic String return solveEven(ls); } // Function to find minimum number of cuts // If length of String is odd function solveOdd(s) { return 2; } function solve(s) { // If length is <=3 then it is impossible if (s.length <= 3) { return -1; } // Array to store frequency of characters let cnt = new Array(25); for(let i=0;i<25;i++) cnt[i]=0; // Store count of characters in a array for (let i = 0; i < s.length; i++) { cnt[s[i].charCodeAt(0) - 'a'.charCodeAt(0)]++; } // Condition for edge cases if (Math.max(...cnt) >= s.length - 1) { return -1; } // If length is even if (s.length % 2 == 0) { return solveEven(s); } // If length is odd if (s.length % 2 == 1) { return solveOdd(s); } return Number.MIN_VALUE; } // Driver Code let s = "nolon"; document.write(solve(s)); // This code is contributed by avanitrachhadiya2155 </script>
2
Complejidad de tiempo : O(N)
Espacio auxiliar : O (máx. (26, N))