Costo máximo de dividir el árbol binario dado en dos mitades

Dado un árbol binario con N Nodes valorados de 0 a N – 1 y N-1 aristas y una array arr[] que consiste en valores de aristas, la tarea es encontrar el costo máximo de dividir el árbol en dos mitades. 
 

El costo de dividir un árbol es igual al producto de la suma de los valores de los Nodes de los subárboles divididos.

Ejemplos:

Entrada: N = 6, arr[] = {13, 8, 7, 4, 5, 9}, Edges[][] = {{0, 1}, {1, 2}, {1, 4}, { 3, 4}, {4, 5}}
Salida: 504
Explicación:
A continuación se muestra el árbol dado y el árbol resultante después de eliminar el borde:

Elimine el borde entre el 1 y el 4, luego
t1 = valor en [0] + valor en [1] + valor en [2] = 13 + 8 + 7
t1 = valor en [3] + valor en [4] + valor en [5] = 4 + 5 + 9
t1*t2 = (13 + 8 + 7) * (4 + 5 + 9) = 504

Entrada: N = 7, arr[]= {13, 8, 7, 4, 5, 9, 100}, Edges[][] = { {0, 1}, {1, 2}, {1, 4} , {3, 4}, {4, 5}, {2, 6}}
Salida: 4600
Explicación:
A continuación se muestra el árbol dado y el árbol resultante después de eliminar el borde:

Elimine el borde entre el 2 y el 6, luego
t1 = valor en [0] + valor en [1] + valor en [2] + valor en [3] + valor en [4] + valor en [5] = 13 + 8 + 7 + 4 + 5 + 9
t2 = valor en [6] = 100
t1*t2 = (13 + 8 + 7 + 5 + 4 + 9) * (100) = 4600

Enfoque: la idea es atravesar el árbol dado e intentar romper el árbol en todos los bordes posibles y luego encontrar el costo máximo de dividir en esos bordes. Después de todos los pasos anteriores, imprima el costo máximo entre todas las divisiones. A continuación se muestran los pasos:

  1. Todos los bordes se almacenan usando los bordes de la lista de adyacencia y los valores en cada Node se almacenan en la array dada arr[] .
  2. Para el Node actual, encuentre la suma de valores en sus descendientes, incluyéndose a sí mismo.
  3. Supongamos que si se elimina el borde entre el Node actual y su padre, se pueden formar dos árboles.
  4. Ahora, calcule los valores de t1, t2 y verifique que el producto de t1 y t2 sea máximo o no.
  5. Repita este proceso recursivamente para todos los Nodes secundarios del Node actual.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// To store the results and sum of
// all nodes in the array
int ans = 0, allsum = 0;
 
// To create adjacency list
vector<int> edges[100001];
 
// Function to add edges into the
// adjacency list
void addedge(int a, int b)
{
    edges[a].push_back(b);
    edges[b].push_back(a);
}
 
// Recursive function that calculate
// the value of the cost of splitting
// the tree recursively
void findCost(int r, int p, int arr[])
{
    int i, cur;
 
    for (i = 0; i < edges[r].size();
         i++) {
 
        // Fetch the child of node-r
        cur = edges[r].at(i);
 
        // Neglect if cur node is parent
        if (cur == p)
            continue;
 
        findCost(cur, r, arr);
 
        // Add all values of nodes
        // which are decendents of r
        arr[r] += arr[cur];
    }
 
    // The two trees formed are rooted
    // at 'r' with its decendents
    int t1 = arr[r];
    int t2 = allsum - t1;
 
    // Check and replace if current
    // product t1*t2 is large
    if (t1 * t2 > ans) {
        ans = t1 * t2;
    }
}
 
// Function to find the maximum cost
// after splitting the tree in 2 halves
void maximumCost(int r, int p,
                 int N, int M,
                 int arr[],
                 int Edges[][2])
{
    // Find sum of values in all nodes
    for (int i = 0; i < N; i++) {
        allsum += arr[i];
    }
 
    // Traverse edges to create
    // adjacency list
    for (int i = 0; i < M; i++) {
        addedge(Edges[i][0],
                Edges[i][1]);
    }
 
    // Function Call
    findCost(r, p, arr);
}
 
// Driver Code
int main()
{
    int a, b, N = 6;
 
    // Values in each node
    int arr[] = { 13, 8, 7, 4, 5, 9 };
 
    int M = 5;
 
    // Given Edges
    int Edges[][2] = { { 0, 1 }, { 1, 2 },
                       { 1, 4 }, { 3, 4 },
                       { 4, 5 } };
 
    maximumCost(1, -1, N, M, arr, Edges);
 
    cout << ans;
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
class GFG{
  
// To store the results and sum of
// all nodes in the array
static int ans = 0, allsum = 0;
  
// To create adjacency list
static Vector<Integer> []edges = new Vector[100001];
  
// Function to add edges into the
// adjacency list
static void addedge(int a, int b)
{
    edges[a].add(b);
    edges[b].add(a);
}
  
// Recursive function that calculate
// the value of the cost of splitting
// the tree recursively
static void findCost(int r, int p, int arr[])
{
    int i, cur;
    for (i = 0; i < edges[r].size(); i++)
    {
        // Fetch the child of node-r
        cur = edges[r].get(i);
  
        // Neglect if cur node is parent
        if (cur == p)
            continue;
  
        findCost(cur, r, arr);
  
        // Add all values of nodes
        // which are decendents of r
        arr[r] += arr[cur];
    }
  
    // The two trees formed are rooted
    // at 'r' with its decendents
    int t1 = arr[r];
    int t2 = allsum - t1;
  
    // Check and replace if current
    // product t1*t2 is large
    if (t1 * t2 > ans)
    {
        ans = t1 * t2;
    }
}
  
// Function to find the maximum cost
// after splitting the tree in 2 halves
static void maximumCost(int r, int p,
                        int N, int M,
                        int arr[],
                        int Edges[][])
{
    // Find sum of values in all nodes
    for (int i = 0; i < N; i++)
    {
        allsum += arr[i];
    }
  
    // Traverse edges to create
    // adjacency list
    for (int i = 0; i < M; i++)
    {
        addedge(Edges[i][0],
                Edges[i][1]);
    }
  
    // Function Call
    findCost(r, p, arr);
}
  
// Driver Code
public static void main(String[] args)
{
    int a, b, N = 6;
  
    // Values in each node
    int arr[] = {13, 8, 7, 4, 5, 9};
  
    int M = 5;
  
    // Given Edges
    int Edges[][] = {{0, 1}, {1, 2},
                     {1, 4}, {3, 4},
                     {4, 5}};
    for (int i = 0; i < edges.length; i++)
        edges[i] = new Vector<Integer>();
    maximumCost(1, -1, N, M, arr, Edges);
    System.out.print(ans);
}
}
  
// This code is contributed by Amit Katiyar

Python3

# Python3 program for the above approach
 
# To store the results and sum of
# all nodes in the array
ans = 0
allsum = 0
 
# To create adjacency list
edges = [[] for i in range(100001)]
 
# Function to add edges into the
# adjacency list
def addedge(a, b):
     
    global edges
    edges[a].append(b)
    edges[b].append(a)
 
# Recursive function that calculate
# the value of the cost of splitting
# the tree recursively
def findCost(r, p, arr):
     
    global edges
    global ans
    global allsum
    i = 0
     
    for i in range(len(edges[r])):
         
        # Fetch the child of node-r
        cur = edges[r][i]
 
        # Neglect if cur node is parent
        if (cur == p):
            continue
 
        findCost(cur, r, arr)
 
        # Add all values of nodes
        # which are decendents of r
        arr[r] += arr[cur]
 
    # The two trees formed are rooted
    # at 'r' with its decendents
    t1 = arr[r]
    t2 = allsum - t1
 
    # Check and replace if current
    # product t1*t2 is large
    if (t1 * t2 > ans):
        ans = t1 * t2
 
# Function to find the maximum cost
# after splitting the tree in 2 halves
def maximumCost(r, p, N, M, arr, Edges):
     
    global allsum
     
    # Find sum of values in all nodes
    for i in range(N):
        allsum += arr[i]
 
    # Traverse edges to create
    # adjacency list
    for i in range(M):
        addedge(Edges[i][0], Edges[i][1])
 
    # Function Call
    findCost(r, p, arr)
 
# Driver Code
if __name__ == '__main__':
     
    N = 6
 
    # Values in each node
    arr = [ 13, 8, 7, 4, 5, 9 ]
 
    M = 5
 
    # Given Edges
    Edges = [ [ 0, 1 ], [ 1, 2 ],
              [ 1, 4 ], [ 3, 4 ],
              [ 4, 5 ] ]
 
    maximumCost(1, -1, N, M, arr, Edges)
 
    print(ans)
 
# This code is contributed by ipg2016107

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
  
// To store the results and sum of
// all nodes in the array
static int ans = 0, allsum = 0;
  
// To create adjacency list
static List<int> []edges = new List<int>[100001];
  
// Function to add edges into the
// adjacency list
static void addedge(int a, int b)
{
    edges[a].Add(b);
    edges[b].Add(a);
}
  
// Recursive function that calculate
// the value of the cost of splitting
// the tree recursively
static void findCost(int r, int p, int []arr)
{
    int i, cur;
    for (i = 0; i < edges[r].Count; i++)
    {
        // Fetch the child of node-r
        cur = edges[r][i];
  
        // Neglect if cur node is parent
        if (cur == p)
            continue;
  
        findCost(cur, r, arr);
  
        // Add all values of nodes
        // which are decendents of r
        arr[r] += arr[cur];
    }
  
    // The two trees formed are rooted
    // at 'r' with its decendents
    int t1 = arr[r];
    int t2 = allsum - t1;
  
    // Check and replace if current
    // product t1*t2 is large
    if (t1 * t2 > ans)
    {
        ans = t1 * t2;
    }
}
  
// Function to find the maximum cost
// after splitting the tree in 2 halves
static void maximumCost(int r, int p,
                        int N, int M,
                        int []arr, int [, ]Edges)
{
    // Find sum of values in all nodes
    for (int i = 0; i < N; i++)
    {
        allsum += arr[i];
    }
  
    // Traverse edges to create
    // adjacency list
    for (int i = 0; i < M; i++)
    {
        addedge(Edges[i, 0],
                Edges[i, 1]);
    }
  
    // Function Call
    findCost(r, p, arr);
}
  
// Driver Code
public static void Main(String[] args)
{
    int  N = 6;
  
    // Values in each node
    int []arr = {13, 8, 7, 4, 5, 9};
  
    int M = 5;
  
    // Given Edges
    int [,]Edges = {{0, 1},
                    {1, 2}, {1, 4},
                    {3, 4}, {4, 5}};
    for (int i = 0; i < edges.Length; i++)
        edges[i] = new List<int>();
    maximumCost(1, -1, N, M, arr, Edges);
    Console.Write(ans);
}
}
  
// This code is contributed by Rajput-Ji

Javascript

<script>
 
    // JavaScript program for the above approach
     
    // To store the results and sum of
    // all nodes in the array
    let ans = 0, allsum = 0;
 
    // To create adjacency list
    let edges = new Array(100001);
 
    // Function to add edges into the
    // adjacency list
    function addedge(a, b)
    {
        edges[a].push(b);
        edges[b].push(a);
    }
 
    // Recursive function that calculate
    // the value of the cost of splitting
    // the tree recursively
    function findCost(r, p, arr)
    {
        let i, cur;
        for (i = 0; i < edges[r].length; i++)
        {
            // Fetch the child of node-r
            cur = edges[r][i];
 
            // Neglect if cur node is parent
            if (cur == p)
                continue;
 
            findCost(cur, r, arr);
 
            // Add all values of nodes
            // which are decendents of r
            arr[r] += arr[cur];
        }
 
        // The two trees formed are rooted
        // at 'r' with its decendents
        let t1 = arr[r];
        let t2 = allsum - t1;
 
        // Check and replace if current
        // product t1*t2 is large
        if (t1 * t2 > ans)
        {
            ans = t1 * t2;
        }
    }
 
    // Function to find the maximum cost
    // after splitting the tree in 2 halves
    function maximumCost(r, p, N, M, arr, Edges)
    {
        // Find sum of values in all nodes
        for (let i = 0; i < N; i++)
        {
            allsum += arr[i];
        }
 
        // Traverse edges to create
        // adjacency list
        for (let i = 0; i < M; i++)
        {
            addedge(Edges[i][0], Edges[i][1]);
        }
 
        // Function Call
        findCost(r, p, arr);
    }
     
    let  N = 6;
   
    // Values in each node
    let arr = [13, 8, 7, 4, 5, 9];
   
    let M = 5;
   
    // Given Edges
    let Edges = [[0, 1], [1, 2], [1, 4], [3, 4], [4, 5]];
    for (let i = 0; i < edges.length; i++)
        edges[i] = [];
    maximumCost(1, -1, N, M, arr, Edges);
    document.write(ans);
     
</script>
Producción: 

504

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por saideepgummadavelly y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *