Dadas dos strings X e Y, y dos valores costX y costY. Necesitamos encontrar el costo mínimo requerido para hacer que las dos strings dadas sean idénticas. Podemos eliminar caracteres de ambas strings. El costo de eliminar un carácter de la string X es costX y de Y es costY. El costo de eliminar todos los caracteres de una string es el mismo.
Ejemplos:
Input : X = "abcd", Y = "acdb", costX = 10, costY = 20. Output: 30 For Making both strings identical we have to delete character 'b' from both the string, hence cost will be = 10 + 20 = 30. Input : X = "ef", Y = "gh", costX = 10, costY = 20. Output: 60 For making both strings identical, we have to delete 2-2 characters from both the strings, hence cost will be = 10 + 10 + 20 + 20 = 60.
Este problema es una variación de la subsecuencia común más larga (LCS) . La idea es simple, primero encontramos la longitud de la subsecuencia común más larga de las strings X e Y. Ahora restando len_LCS con longitudes de strings individuales nos da la cantidad de caracteres que se eliminarán para que sean idénticos.
// Cost of making two strings identical is SUM of following two // 1) Cost of removing extra characters (other than LCS) // from X[] // 2) Cost of removing extra characters (other than LCS) // from Y[] Minimum Cost to make strings identical = costX * (m - len_LCS) + costY * (n - len_LCS). m ==> Length of string X m ==> Length of string Y len_LCS ==> Length of LCS Of X and Y. costX ==> Cost of removing a character from X[] costY ==> Cost of removing a character from Y[] Note that cost of removing all characters from a string is same.
A continuación se muestra la implementación de la idea anterior.
C++
/* C++ code to find minimum cost to make two strings identical */ #include<bits/stdc++.h> using namespace std; /* Returns length of LCS for X[0..m-1], Y[0..n-1] */ int lcs(char *X, char *Y, int m, int n) { int L[m+1][n+1]; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i=0; i<=m; i++) { for (int j=0; j<=n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (X[i-1] == Y[j-1]) L[i][j] = L[i-1][j-1] + 1; else L[i][j] = max(L[i-1][j], L[i][j-1]); } } /* L[m][n] contains length of LCS for X[0..n-1] and Y[0..m-1] */ return L[m][n]; } // Returns cost of making X[] and Y[] identical. costX is // cost of removing a character from X[] and costY is cost // of removing a character from Y[]/ int findMinCost(char X[], char Y[], int costX, int costY) { // Find LCS of X[] and Y[] int m = strlen(X), n = strlen(Y); int len_LCS = lcs(X, Y, m, n); // Cost of making two strings identical is SUM of // following two // 1) Cost of removing extra characters // from first string // 2) Cost of removing extra characters from // second string return costX * (m - len_LCS) + costY * (n - len_LCS); } /* Driver program to test above function */ int main() { char X[] = "ef"; char Y[] = "gh"; cout << "Minimum Cost to make two strings " << " identical is = " << findMinCost(X, Y, 10, 20); return 0; }
Java
// Java code to find minimum cost to // make two strings identical import java.io.*; class GFG { // Returns length of LCS for X[0..m-1], Y[0..n-1] static int lcs(String X, String Y, int m, int n) { int L[][]=new int[m + 1][n + 1]; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (X.charAt(i - 1) == Y.charAt(j - 1)) L[i][j] = L[i - 1][j - 1] + 1; else L[i][j] = Math.max(L[i - 1][j], L[i][j - 1]); } } // L[m][n] contains length of LCS // for X[0..n-1] and Y[0..m-1] return L[m][n]; } // Returns cost of making X[] and Y[] identical. // costX is cost of removing a character from X[] // and costY is cost of removing a character from Y[]/ static int findMinCost(String X, String Y, int costX, int costY) { // Find LCS of X[] and Y[] int m = X.length(); int n = Y.length(); int len_LCS; len_LCS = lcs(X, Y, m, n); // Cost of making two strings identical // is SUM of following two // 1) Cost of removing extra characters // from first string // 2) Cost of removing extra characters // from second string return costX * (m - len_LCS) + costY * (n - len_LCS); } // Driver code public static void main (String[] args) { String X = "ef"; String Y = "gh"; System.out.println( "Minimum Cost to make two strings " + " identical is = " + findMinCost(X, Y, 10, 20)); } } // This code is contributed by vt_m
Python3
# Python code to find minimum cost # to make two strings identical # Returns length of LCS for # X[0..m-1], Y[0..n-1] def lcs(X, Y, m, n): L = [[0 for i in range(n + 1)] for i in range(m + 1)] # Following steps build # L[m+1][n+1] in bottom # up fashion. Note that # L[i][j] contains length # of LCS of X[0..i-1] and Y[0..j-1] for i in range(m + 1): for j in range(n + 1): if i == 0 or j == 0: L[i][j] = 0 else if X[i - 1] == Y[j - 1]: L[i][j] = L[i - 1][j - 1] + 1 else: L[i][j] = max(L[i - 1][j], L[i][j - 1]) # L[m][n] contains length of # LCS for X[0..n-1] and Y[0..m-1] return L[m][n] # Returns cost of making X[] # and Y[] identical. costX is # cost of removing a character # from X[] and costY is cost # of removing a character from Y[] def findMinCost(X, Y, costX, costY): # Find LCS of X[] and Y[] m = len(X) n = len(Y) len_LCS =lcs(X, Y, m, n) # Cost of making two strings # identical is SUM of following two # 1) Cost of removing extra # characters from first string # 2) Cost of removing extra # characters from second string return (costX * (m - len_LCS) + costY * (n - len_LCS)) # Driver Code X = "ef" Y = "gh" print('Minimum Cost to make two strings ', end = '') print('identical is = ', findMinCost(X, Y, 10, 20)) # This code is contributed # by sahilshelangia
C#
// C# code to find minimum cost to // make two strings identical using System; class GFG { // Returns length of LCS for X[0..m-1], Y[0..n-1] static int lcs(String X, String Y, int m, int n) { int [,]L = new int[m + 1, n + 1]; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) L[i,j] = 0; else if (X[i - 1] == Y[j - 1]) L[i,j] = L[i - 1,j - 1] + 1; else L[i,j] = Math.Max(L[i - 1,j], L[i,j - 1]); } } // L[m][n] contains length of LCS // for X[0..n-1] and Y[0..m-1] return L[m,n]; } // Returns cost of making X[] and Y[] identical. // costX is cost of removing a character from X[] // and costY is cost of removing a character from Y[] static int findMinCost(String X, String Y, int costX, int costY) { // Find LCS of X[] and Y[] int m = X.Length; int n = Y.Length; int len_LCS; len_LCS = lcs(X, Y, m, n); // Cost of making two strings identical // is SUM of following two // 1) Cost of removing extra characters // from first string // 2) Cost of removing extra characters // from second string return costX * (m - len_LCS) + costY * (n - len_LCS); } // Driver code public static void Main () { String X = "ef"; String Y = "gh"; Console.Write( "Minimum Cost to make two strings " + " identical is = " + findMinCost(X, Y, 10, 20)); } } // This code is contributed by nitin mittal.
PHP
<?php /* PHP code to find minimum cost to make two strings identical */ /* Returns length of LCS for X[0..m-1], Y[0..n-1] */ function lcs($X, $Y, $m, $n) { $L = array_fill(0,($m+1),array_fill(0,($n+1),NULL)); /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for ($i=0; $i<=$m; $i++) { for ($j=0; $j<=$n; $j++) { if ($i == 0 || $j == 0) $L[$i][$j] = 0; else if ($X[$i-1] == $Y[$j-1]) $L[$i][$j] = $L[$i-1][$j-1] + 1; else $L[$i][$j] = max($L[$i-1][$j], $L[$i][$j-1]); } } /* L[m][n] contains length of LCS for X[0..n-1] and Y[0..m-1] */ return $L[$m][$n]; } // Returns cost of making X[] and Y[] identical. costX is // cost of removing a character from X[] and costY is cost // of removing a character from Y[]/ function findMinCost(&$X, &$Y,$costX, $costY) { // Find LCS of X[] and Y[] $m = strlen($X); $n = strlen($Y); $len_LCS = lcs($X, $Y, $m, $n); // Cost of making two strings identical is SUM of // following two // 1) Cost of removing extra characters // from first string // 2) Cost of removing extra characters from // second string return $costX * ($m - $len_LCS) + $costY * ($n - $len_LCS); } /* Driver program to test above function */ $X = "ef"; $Y = "gh"; echo "Minimum Cost to make two strings ". " identical is = " . findMinCost($X, $Y, 10, 20); return 0; ?>
Javascript
<script> // Javascript code to find minimum cost to // make two strings identical // Returns length of LCS for X[0..m-1], Y[0..n-1] function lcs(X, Y, m, n) { let L = new Array(m+1); for(let i = 0; i < m + 1; i++) { L[i] = new Array(n + 1); } for(let i = 0; i < m + 1; i++) { for(let j = 0; j < n + 1; j++) { L[i][j] = 0; } } /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (let i = 0; i <= m; i++) { for (let j = 0; j <= n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (X[i-1] == Y[j-1]) L[i][j] = L[i - 1][j - 1] + 1; else L[i][j] = Math.max(L[i - 1][j], L[i][j - 1]); } } // L[m][n] contains length of LCS // for X[0..n-1] and Y[0..m-1] return L[m][n]; } // Returns cost of making X[] and Y[] identical. // costX is cost of removing a character from X[] // and costY is cost of removing a character from Y[]/ function findMinCost(X,Y,costX,costY) { // Find LCS of X[] and Y[] let m = X.length; let n = Y.length; let len_LCS; len_LCS = lcs(X, Y, m, n); // Cost of making two strings identical // is SUM of following two // 1) Cost of removing extra characters // from first string // 2) Cost of removing extra characters // from second string return costX * (m - len_LCS) + costY * (n - len_LCS); } // Driver code let X = "ef"; let Y = "gh"; document.write( "Minimum Cost to make two strings " + " identical is = " + findMinCost(X, Y, 10, 20)); // This code is contributed by avanitrachhadiya2155 </script>
Minimum Cost to make two strings identical is = 60
Este artículo es una contribución de Shashank Mishra (Gullu) . Este artículo está revisado por el equipo geeksforgeeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA