Se le da una bolsa de tamaño W kg y se le proporcionan costos de paquetes de diferentes pesos de naranjas en la array costo[] donde costo[i] es básicamente el costo de ‘i’ kg paquete de naranjas. Donde costo[i] = -1 significa que el paquete de ‘i’
kg de naranja no está disponible Encuentre el costo total mínimo para comprar exactamente W kg de naranjas y, si no es posible comprar exactamente W kg de naranjas, imprima -1. Se puede suponer que hay un suministro infinito de todos los tipos de paquetes disponibles.
Nota: la array comienza desde el índice 1.
Ejemplos:
Input : W = 5, cost[] = {20, 10, 4, 50, 100} Output : 14 We can choose two oranges to minimize cost. First orange of 2Kg and cost 10. Second orange of 3Kg and cost 4. Input : W = 5, cost[] = {1, 10, 4, 50, 100} Output : 5 We can choose five oranges of weight 1 kg. Input : W = 5, cost[] = {1, 2, 3, 4, 5} Output : 5 Costs of 1, 2, 3, 4 and 5 kg packets are 1, 2, 3, 4 and 5 Rs respectively. We choose packet of 5kg having cost 5 for minimum cost to get 5Kg oranges. Input : W = 5, cost[] = {-1, -1, 4, 5, -1} Output : -1 Packets of size 1, 2 and 5 kg are unavailable because they have cost -1. Cost of 3 kg packet is 4 Rs and of 4 kg is 5 Rs. Here we have only weights 3 and 4 so by using these two we can not make exactly W kg weight, therefore answer is -1.
Este problema se puede reducir a Ilimitado Knapsac k. Entonces, en la array de costos, primero ignoramos aquellos paquetes que no están disponibles, es decir; cost es -1 y luego recorrer la array de costos y crear dos arrays val[] para almacenar el costo de ‘i’ kg paquete de naranja y wt[] para almacenar el peso del paquete correspondiente. Supongamos que cost[i] = 50, por lo que el peso del paquete será i y el coste será 50.
Algoritmo:
- Cree la array min_cost[n+1][W+1], donde n es el número de paquetes de naranja ponderados distintos y W es la capacidad máxima de la bolsa.
- Inicialice la fila 0 con INF (infinito) y la columna 0 con 0.
- Ahora llena la array
- si wt[i-1] > j entonces min_cost[i][j] = min_cost[i-1][j] ;
- si wt[i-1] <= j entonces min_cost[i][j] = min(min_cost[i-1][j], val[i-1] + min_cost[i][j-wt[i-1 ]]);
- Si min_cost[n][W]==INF, la salida será -1 porque esto significa que no podemos hacer que el peso sea W usando estos pesos; de lo contrario, la salida será min_cost[n][W] .
C++
// C++ program to find minimum cost to get exactly // W Kg with given packets #include<bits/stdc++.h> #define INF 1000000 using namespace std; // cost[] initial cost array including unavailable packet // W capacity of bag int MinimumCost(int cost[], int n, int W) { // val[] and wt[] arrays // val[] array to store cost of 'i' kg packet of orange // wt[] array weight of packet of orange vector<int> val, wt; // traverse the original cost[] array and skip // unavailable packets and make val[] and wt[] // array. size variable tells the available number // of distinct weighted packets int size = 0; for (int i=0; i<n; i++) { if (cost[i]!= -1) { val.push_back(cost[i]); wt.push_back(i+1); size++; } } n = size; int min_cost[n+1][W+1]; // fill 0th row with infinity for (int i=0; i<=W; i++) min_cost[0][i] = INF; // fill 0'th column with 0 for (int i=1; i<=n; i++) min_cost[i][0] = 0; // now check for each weight one by one and fill the // matrix according to the condition for (int i=1; i<=n; i++) { for (int j=1; j<=W; j++) { // wt[i-1]>j means capacity of bag is // less than weight of item if (wt[i-1] > j) min_cost[i][j] = min_cost[i-1][j]; // here we check we get minimum cost either // by including it or excluding it else min_cost[i][j] = min(min_cost[i-1][j], min_cost[i][j-wt[i-1]] + val[i-1]); } } // exactly weight W can not be made by given weights return (min_cost[n][W]==INF)? -1: min_cost[n][W]; } // Driver program to run the test case int main() { int cost[] = {1, 2, 3, 4, 5}, W = 5; int n = sizeof(cost)/sizeof(cost[0]); cout << MinimumCost(cost, n, W); return 0; }
Java
// Java Code for Minimum cost to // fill given weight in a bag import java.util.*; class GFG { // cost[] initial cost array including // unavailable packet W capacity of bag public static int MinimumCost(int cost[], int n, int W) { // val[] and wt[] arrays // val[] array to store cost of 'i' kg // packet of orange wt[] array weight of // packet of orange Vector<Integer> val = new Vector<Integer>(); Vector<Integer> wt = new Vector<Integer>(); // traverse the original cost[] array and skip // unavailable packets and make val[] and wt[] // array. size variable tells the available // number of distinct weighted packets int size = 0; for (int i = 0; i < n; i++) { if (cost[i] != -1) { val.add(cost[i]); wt.add(i + 1); size++; } } n = size; int min_cost[][] = new int[n+1][W+1]; // fill 0th row with infinity for (int i = 0; i <= W; i++) min_cost[0][i] = Integer.MAX_VALUE; // fill 0'th column with 0 for (int i = 1; i <= n; i++) min_cost[i][0] = 0; // now check for each weight one by one and // fill the matrix according to the condition for (int i = 1; i <= n; i++) { for (int j = 1; j <= W; j++) { // wt[i-1]>j means capacity of bag is // less than weight of item if (wt.get(i-1) > j) min_cost[i][j] = min_cost[i-1][j]; // here we check we get minimum cost // either by including it or excluding // it else min_cost[i][j] = Math.min(min_cost[i-1][j], min_cost[i][j-wt.get(i-1)] + val.get(i-1)); } } // exactly weight W can not be made by // given weights return (min_cost[n][W] == Integer.MAX_VALUE)? -1: min_cost[n][W]; } /* Driver program to test above function */ public static void main(String[] args) { int cost[] = {1, 2, 3, 4, 5}, W = 5; int n = cost.length; System.out.println(MinimumCost(cost, n, W)); } } // This code is contributed by Arnav Kr. Mandal.
Python3
# Python program to find minimum cost to get exactly # W Kg with given packets INF = 1000000 # cost[] initial cost array including unavailable packet # W capacity of bag def MinimumCost(cost, n, W): # val[] and wt[] arrays # val[] array to store cost of 'i' kg packet of orange # wt[] array weight of packet of orange val = list() wt= list() # traverse the original cost[] array and skip # unavailable packets and make val[] and wt[] # array. size variable tells the available number # of distinct weighted packets. size = 0 for i in range(n): if (cost[i] != -1): val.append(cost[i]) wt.append(i+1) size += 1 n = size min_cost = [[0 for i in range(W+1)] for j in range(n+1)] # fill 0th row with infinity for i in range(W+1): min_cost[0][i] = INF # fill 0th column with 0 for i in range(1, n+1): min_cost[i][0] = 0 # now check for each weight one by one and fill the # matrix according to the condition for i in range(1, n+1): for j in range(1, W+1): # wt[i-1]>j means capacity of bag is # less than weight of item if (wt[i-1] > j): min_cost[i][j] = min_cost[i-1][j] # here we check we get minimum cost either # by including it or excluding it else: min_cost[i][j] = min(min_cost[i-1][j], min_cost[i][j-wt[i-1]] + val[i-1]) # exactly weight W can not be made by given weights if(min_cost[n][W] == INF): return -1 else: return min_cost[n][W] # Driver program to run the test case cost = [1, 2, 3, 4, 5] W = 5 n = len(cost) print(MinimumCost(cost, n, W)) # This code is contributed by Soumen Ghosh.
C#
// C# Code for Minimum cost to // fill given weight in a bag using System; using System.Collections.Generic; class GFG { // cost[] initial cost array including // unavailable packet W capacity of bag public static int MinimumCost(int []cost, int n, int W) { // val[] and wt[] arrays // val[] array to store cost of 'i' kg // packet of orange wt[] array weight of // packet of orange List<int> val = new List<int>(); List<int> wt = new List<int>(); // traverse the original cost[] array and skip // unavailable packets and make val[] and wt[] // array. size variable tells the available // number of distinct weighted packets int size = 0; for (int i = 0; i < n; i++) { if (cost[i] != -1) { val.Add(cost[i]); wt.Add(i + 1); size++; } } n = size; int [,]min_cost = new int[n+1,W+1]; // fill 0th row with infinity for (int i = 0; i <= W; i++) min_cost[0,i] = int.MaxValue; // fill 0'th column with 0 for (int i = 1; i <= n; i++) min_cost[i,0] = 0; // now check for each weight one by one and // fill the matrix according to the condition for (int i = 1; i <= n; i++) { for (int j = 1; j <= W; j++) { // wt[i-1]>j means capacity of bag is // less than weight of item if (wt[i-1] > j) min_cost[i,j] = min_cost[i-1,j]; // here we check we get minimum cost // either by including it or excluding // it else min_cost[i,j] = Math.Min(min_cost[i-1,j], min_cost[i,j-wt[i-1]] + val[i-1]); } } // exactly weight W can not be made by // given weights return (min_cost[n,W] == int.MaxValue )? -1: min_cost[n,W]; } /* Driver program to test above function */ public static void Main() { int []cost = {1, 2, 3, 4, 5}; int W = 5; int n = cost.Length; Console.WriteLine(MinimumCost(cost, n, W)); } } // This code is contributed by Ryuga
PHP
<?php // PHP program to find minimum cost to // get exactly W Kg with given packets $INF = 1000000; // cost[] initial cost array including // unavailable packet W capacity of bag function MinimumCost(&$cost, $n, $W) { global $INF; // val[] and wt[] arrays // val[] array to store cost of 'i' // kg packet of orange // wt[] array weight of packet of orange $val = array(); $wt = array(); // traverse the original cost[] array // and skip unavailable packets and // make val[] and wt[] array. size // variable tells the available number // of distinct weighted packets $size = 0; for ($i = 0; $i < $n; $i++) { if ($cost[$i] != -1) { array_push($val, $cost[$i]); array_push($wt, $i + 1); $size++; } } $n = $size; $min_cost = array_fill(0, $n + 1, array_fill(0, $W + 1, NULL)); // fill 0th row with infinity for ($i = 0; $i <= $W; $i++) $min_cost[0][$i] = $INF; // fill 0'th column with 0 for ($i = 1; $i <= $n; $i++) $min_cost[$i][0] = 0; // now check for each weight one by // one and fill the matrix according // to the condition for ($i = 1; $i <= $n; $i++) { for ($j = 1; $j <= $W; $j++) { // wt[i-1]>j means capacity of bag // is less than weight of item if ($wt[$i - 1] > $j) $min_cost[$i][$j] = $min_cost[$i - 1][$j]; // here we check we get minimum // cost either by including it // or excluding it else $min_cost[$i][$j] = min($min_cost[$i - 1][$j], $min_cost[$i][$j - $wt[$i - 1]] + $val[$i - 1]); } } // exactly weight W can not be made // by given weights if ($min_cost[$n][$W] == $INF) return -1; else return $min_cost[$n][$W]; } // Driver Code $cost = array(1, 2, 3, 4, 5); $W = 5; $n = sizeof($cost); echo MinimumCost($cost, $n, $W); // This code is contributed by ita_c ?>
Javascript
<script> // Javascript program to find minimum cost to get exactly // W Kg with given packets let INF = 1000000; // cost[] initial cost array including unavailable packet // W capacity of bag function MinimumCost(cost, n, W) { // val[] and wt[] arrays // val[] array to store cost of 'i' kg packet of orange // wt[] array weight of packet of orange let val = [], wt = []; // traverse the original cost[] array and skip // unavailable packets and make val[] and wt[] // array. size variable tells the available number // of distinct weighted packets let size = 0; for (let i=0; i<n; i++) { if (cost[i]!= -1) { val.push(cost[i]); wt.push(i+1); size++; } } n = size; let min_cost = new Array(n+1); for(let i = 0; i < n + 1; i++) { min_cost[i] = new Array(W + 1); } // fill 0th row with infinity for (let i=0; i<=W; i++) min_cost[0][i] = INF; // fill 0'th column with 0 for (let i=1; i<=n; i++) min_cost[i][0] = 0; // now check for each weight one by one and fill the // matrix according to the condition for (let i=1; i<=n; i++) { for (let j=1; j<=W; j++) { // wt[i-1]>j means capacity of bag is // less than weight of item if (wt[i-1] > j) min_cost[i][j] = min_cost[i-1][j]; // here we check we get minimum cost either // by including it or excluding it else min_cost[i][j] = Math.min(min_cost[i-1][j], min_cost[i][j-wt[i-1]] + val[i-1]); } } // exactly weight W can not be made by given weights return (min_cost[n][W]==INF)? -1: min_cost[n][W]; } // Driver code let cost = [1, 2, 3, 4, 5], W = 5; let n = cost.length; document.write(MinimumCost(cost, n, W)); // This code is contributed by suresh07. </script>
5
Solución de espacio optimizado Si observamos más de cerca este problema, podemos notar que se trata de una variación del Problema de corte de varillas . En lugar de hacer la maximización, aquí tenemos que hacer la minimización.
C++
// C++ program to find minimum cost to // get exactly W Kg with given packets #include<bits/stdc++.h> using namespace std; /* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces */ int minCost(int cost[], int n) { int dp[n+1]; dp[0] = 0; // Build the table val[] in bottom up // manner and return the last entry // from the table for (int i = 1; i<=n; i++) { int min_cost = INT_MAX; for (int j = 0; j < i; j++) if(cost[j]!=-1) min_cost = min(min_cost, cost[j] + dp[i-j-1]); dp[i] = min_cost; } return dp[n]; } /* Driver code */ int main() { int cost[] = {20, 10, 4, 50, 100}; int W = sizeof(cost)/sizeof(cost[0]); cout << minCost(cost, W); return 0; }
Java
// Java program to find minimum cost to // get exactly W Kg with given packets import java.util.*; class Main { /* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces */ public static int minCost(int cost[], int n) { int dp[] = new int[n + 1]; dp[0] = 0; // Build the table val[] in bottom up // manner and return the last entry // from the table for (int i = 1; i <= n; i++) { int min_cost = Integer.MAX_VALUE; for (int j = 0; j < i; j++) if(cost[j]!=-1) { min_cost = Math.min(min_cost, cost[j] + dp[i - j - 1]); } dp[i] = min_cost; } return dp[n]; } public static void main(String[] args) { int cost[] = {10,-1,-1,-1,-1}; int W = cost.length; System.out.print(minCost(cost, W)); } } // This code is contributed by divyeshrabadiya07
Python3
# Python3 program to find minimum cost to # get exactly W Kg with given packets import sys # Returns the best obtainable price for # a rod of length n and price[] as prices # of different pieces def minCost(cost, n): dp = [0 for i in range(n + 1)] # Build the table val[] in bottom up # manner and return the last entry # from the table for i in range(1, n + 1): min_cost = sys.maxsize for j in range(i): if cost[j]!=-1: min_cost = min(min_cost, cost[j] + dp[i - j - 1]) dp[i] = min_cost return dp[n] # Driver code cost = [ 10,-1,-1,-1,-1 ] W = len(cost) print(minCost(cost, W)) # This code is contributed by rag2127
C#
// C# program to find minimum cost to // get exactly W Kg with given packets using System; class GFG { /* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces */ static int minCost(int[] cost, int n) { int[] dp = new int[n + 1]; dp[0] = 0; // Build the table val[] in bottom up // manner and return the last entry // from the table for (int i = 1; i <= n; i++) { int min_cost = Int32.MaxValue; for (int j = 0; j < i; j++) if(cost[j]!=-1) min_cost = Math.Min(min_cost, cost[j] + dp[i - j - 1]); dp[i] = min_cost; } return dp[n]; } // Driver code static void Main() { int[] cost = {20, 10, 4, 50, 100}; int W = cost.Length; Console.Write(minCost(cost, W)); } } // This code is contributed by divyesh072019
Javascript
<script> // Javascript program to find minimum cost to // get exactly W Kg with given packets /* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces */ function minCost(cost, n) { let dp = new Array(n+1); dp[0] = 0; // Build the table val[] in bottom up // manner and return the last entry // from the table for (let i = 1; i<=n; i++) { let min_cost = Number.MAX_VALUE; for (let j = 0; j < i; j++) if(j < n) min_cost = Math.min(min_cost, cost[j] + dp[i-j-1]); dp[i] = min_cost; } return dp[n]; } let cost = [20, 10, 4, 50, 100]; let W = cost.length; document.write(minCost(cost, W)); </script>
14
Enfoque de arriba hacia abajo: también podemos resolver el problema utilizando la memorización.
C++
// C++ program to find minimum cost to // get exactly W Kg with given packets #include <bits/stdc++.h> using namespace std; int helper(vector<int>& cost, vector<int>& weight, int n, int w, vector<vector<int> >& dp) { // base cases if (w == 0) return 0; if (w < 0 or n <= 0) return INT_MAX; if (dp[n][w] != -1) return dp[n][w]; if (cost[n - 1] < 0) return dp[n][w] = min(INT_MAX, helper(cost, weight, n - 1, w, dp)); if (weight[n - 1] <= w) { return dp[n][w] = min(cost[n - 1] + helper(cost, weight, n, w - weight[n - 1], dp), helper(cost, weight, n - 1, w, dp)); } return dp[n][w] = helper(cost, weight, n - 1, w, dp); } int minCost(vector<int>& cost, int W) { int N = cost.size(); // Your code goes here vector<int> weight(N); // create the weight array for (int i = 1; i <= N; i++) { weight[i - 1] = i; } // initialize the dp array vector<vector<int> > dp(N + 1, vector<int>(W + 1, -1)); int res = helper(cost, weight, N, W, dp); // return -1 if result is MAX return (res == INT_MAX) ? -1 : res; } /* Driver code */ int main() { vector<int> cost = { 20, 10, 4, 50, 100 }; int W = cost.size(); cout << minCost(cost, W); return 0; }
Java
// Java program to find minimum cost to // get exactly W Kg with given packets import java.io.*; class GFG { public static int helper(int cost[], int weight[], int n, int w, int dp[][]) { // base cases if (w == 0) return 0; if (w < 0 || n <= 0) return Integer.MAX_VALUE; if (dp[n][w] != -1) return dp[n][w]; if (cost[n - 1] < 0) return dp[n][w] = Math.min( Integer.MAX_VALUE, helper(cost, weight, n - 1, w, dp)); if (weight[n - 1] <= w) { return dp[n][w] = Math.min( cost[n - 1] + helper(cost, weight, n, w - weight[n - 1], dp), helper(cost, weight, n - 1, w, dp)); } return dp[n][w] = helper(cost, weight, n - 1, w, dp); } public static int minCost(int cost[], int W) { int N = cost.length; int weight[] = new int[N]; // create the weight array for (int i = 1; i <= N; i++) { weight[i - 1] = i; } // initialize the dp array int dp[][] = new int[N + 1][W + 1]; for (int i = 0; i < N + 1; i++) for (int j = 0; j < W + 1; j++) dp[i][j] = -1; int res = helper(cost, weight, N, W, dp); // return -1 if result is MAX return (res == Integer.MAX_VALUE) ? -1 : res; } // Driver Code public static void main(String[] args) { int cost[] = { 20, 10, 4, 50, 100 }; int W = cost.length; System.out.print(minCost(cost, W)); } } // This code is contributed by Rohit Pradhan
Python3
# Python3 program to find minimum cost to # get exactly W Kg with given packets import sys def helper(cost, weight, n, w, dp): # base cases if (w == 0): return 0 if (w < 0 or n <= 0): return sys.maxsize if (dp[n][w] != -1): return dp[n][w] if (cost[n - 1] < 0): dp[n][w] = min(sys.maxsize, helper(cost, weight, n - 1, w, dp)) return dp[n][w] if (weight[n - 1] <= w): dp[n][w] = min(cost[n - 1] + helper(cost, weight, n, w - weight[n - 1], dp), helper(cost, weight, n - 1, w, dp)) return dp[n][w] dp[n][w] = helper(cost, weight, n - 1, w, dp) return dp[n][w] def minCost(cost, W): N = len(cost) weight = [0 for i in range(N)] # create the weight array for i in range(1,N + 1): weight[i - 1] = i # initialize the dp array dp = [[-1 for i in range(W + 1)]for j in range(N + 1)] res = helper(cost, weight, N, W, dp) # return -1 if result is MAX return -1 if(res == sys.maxsize) else res # Driver code cost = [ 20, 10, 4, 50, 100 ] W = len(cost) print(minCost(cost, W)) # This code is contributed by shinjanpatra
C#
// C# program to find minimum cost to // get exactly W Kg with given packets using System; class GFG { static int helper(int[] cost, int[] weight, int n, int w, int[,] dp) { // base cases if (w == 0) return 0; if (w < 0 || n <= 0) return Int32.MaxValue; if (dp[n,w] != -1) return dp[n,w]; if (cost[n - 1] < 0) return dp[n,w] = Math.Min( Int32.MaxValue, helper(cost, weight, n - 1, w, dp)); if (weight[n - 1] <= w) { return dp[n,w] = Math.Min( cost[n - 1] + helper(cost, weight, n, w - weight[n - 1], dp), helper(cost, weight, n - 1, w, dp)); } return dp[n,w] = helper(cost, weight, n - 1, w, dp); } static int minCost(int[] cost, int W) { int N = cost.Length; int[] weight = new int[N]; // create the weight array for (int i = 1; i <= N; i++) { weight[i - 1] = i; } // initialize the dp array int[,] dp = new int[N + 1, W + 1]; for (int i = 0; i < N + 1; i++) for (int j = 0; j < W + 1; j++) dp[i,j] = -1; int res = helper(cost, weight, N, W, dp); // return -1 if result is MAX return (res == Int32.MaxValue) ? -1 : res; } // Driver Code static public void Main() { int[] cost = { 20, 10, 4, 50, 100 }; int W = cost.Length; Console.Write(minCost(cost, W)); } } // This code is contributed by kothavvsaakash
Javascript
<script> // JavaScript program to find minimum cost to // get exactly W Kg with given packets function helper(cost, weight, n, w, dp) { // base cases if (w == 0) return 0; if (w < 0 || n <= 0) return Number.MAX_VALUE; if (dp[n][w] != -1) return dp[n][w]; if (cost[n - 1] < 0) return dp[n][w] = Math.min(Number.MAX_VALUE, helper(cost, weight, n - 1, w, dp)); if (weight[n - 1] <= w) { return dp[n][w] = Math.min(cost[n - 1] + helper(cost, weight, n, w - weight[n - 1], dp), helper(cost, weight, n - 1, w, dp)); } return dp[n][w] = helper(cost, weight, n - 1, w, dp); } function minCost(cost,W) { let N = cost.length; // Your code goes here let weight = new Array(N); // create the weight array for (let i = 1; i <= N; i++) { weight[i - 1] = i; } // initialize the dp array let dp = new Array(N + 1).fill(-1).map(()=>new Array(W + 1).fill(-1)); let res = helper(cost, weight, N, W, dp); // return -1 if result is MAX return (res == Number.MAX_VALUE) ? -1 : res; } /* Driver code */ let cost = [ 20, 10, 4, 50, 100 ]; let W = cost.length; document.write(minCost(cost, W),"</br>"); // This code is contributed by shinjanpatra </script>
14
Este artículo es una contribución de Shashank Mishra (Gullu) . Este artículo es revisado por el equipo GeeksForGeeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA