Cuadrado más grande que se puede inscribir en un triángulo equilátero

Aquí se muestra un triángulo equilátero de lado de longitud a . La tarea es encontrar el lado del cuadrado más grande que se puede inscribir en él.
Ejemplos: 
 

Input: a = 5 
Output: 2.32

Input: a = 7
Output: 3.248

Planteamiento : Sea x el lado del cuadrado . 
Ahora, AH es perpendicular a DE
DE es paralelo a BC , entonces, ángulo AED = ángulo ACB = 60
 

In triangle EFC,
              => Sin60 = x/ EC
              => √3 / 2 = x/EC
              => EC = 2x/√3
In triangle AHE,
              => Cos 60 = x/2AE
              => 1/2 = x/2AE
              => AE = x

Entonces, lado AC del triángulo = 2x/√3 + x . Ahora, 
a = 2x/√3 + x 
Por lo tanto, x = a/(1 + 2/√3) = 0.464a
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ Program to find the biggest square
// which can be inscribed within the equilateral triangle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the side
// of the square
float square(float a)
{
 
    // the side cannot be negative
    if (a < 0)
        return -1;
 
    // side of the square
    float x = 0.464 * a;
 
    return x;
}
 
// Driver code
int main()
{
    float a = 5;
    cout << square(a) << endl;
 
    return 0;
}

Java

// Java Program to find the
// the biggest square which
// can be inscribed within
// the equilateral triangle
 
class GFG
{
    // Function to find the side
    // of the square
    static double square(double a)
    {
     
        // the side cannot be negative
        if (a < 0)
            return -1;
     
        // side of the square
        double x = 0.464 * a;
        return x;
    }
     
    // Driver code
    public static void main(String []args)
    {
        double a = 5;
        System.out.println(square(a));
    }
}
 
// This code is contributed by ihritik

Python3

# Python3 Program to find the biggest square
# which can be inscribed within the equilateral triangle
 
# Function to find the side
# of the square
def square( a ):
 
 
    # the side cannot be negative
    if (a < 0):
        return -1
 
    # side of the square
    x = 0.464 * a
 
    return x
 
 
# Driver code
a = 5
print(square(a))
 
# This code is contributed by ihritik

C#

// C# Program to find the biggest
// square which can be inscribed
// within the equilateral triangle
using System;
 
class GFG
{
    // Function to find the side
    // of the square
    static double square(double a)
    {
     
        // the side cannot be negative
        if (a < 0)
            return -1;
     
        // side of the square
        double x = 0.464 * a;
        return x;
    }
     
    // Driver code
    public static void Main()
    {
        double a = 5;
        Console.WriteLine(square(a));
    }
}
 
// This code is contributed by ihritik

PHP

<?php
// PHP Program to find the biggest
//  square which can be inscribed
// within the equilateral triangle
 
// Function to find the side
// of the square
function square($a )
{
 
    // the side cannot be negative
    if ($a < 0)
        return -1;
 
    // side of the square
    $x = 0.464 * $a;
    return $x;
}
 
// Driver code
$a = 5;
echo square($a);
 
// This code is contributed by ihritik
 
?>

Javascript

<script>
// javascript Program to find the
// the biggest square which
// can be inscribed within
// the equilateral triangle
 
 
// Function to find the side
// of the square
function square(a)
{
 
    // the side cannot be negative
    if (a < 0)
        return -1;
 
    // side of the square
    var x = 0.464 * a;
    return x;
}
 
// Driver code
    var a = 5;
    document.write(square(a).toFixed(2));
 
// This code contributed by Princi Singh
 
</script>
Producción: 

2.32

 

Complejidad de tiempo: O(1)

Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *