Cuente los elementos de la array que dividen la suma de todos los demás elementos

Dada una array arr[] , la tarea es contar el número de elementos de la array que dividen la suma de todos los demás elementos.

Ejemplos:  

Entrada: arr[] = {3, 10, 4, 6, 7} 
Salida:
3 divide (10 + 4 + 6 + 7) es decir, 27 
10 divide (3 + 4 + 6 + 7) es decir, 20 
6 divide (3 + 10 + 4 + 7) es decir, 24

Entrada: arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
Salida: 2  

Enfoque ingenuo: ejecute dos bucles de 0 a N, calcule la suma de todos los elementos excepto el elemento actual y, si este elemento divide esa suma, incremente el conteo.
A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the count
// of the required numbers
int countNum(int N, int arr[])
{
    // To store the count of required numbers
    int count = 0;
    for (int i = 0; i < N; i++) {
 
        // Initialize sum to 0
        int sum = 0;
        for (int j = 0; j < N; j++) {
 
            // If current element and the
            // chosen element are same
            if (i == j)
                continue;
 
            // Add all other numbers of array
            else
                sum += arr[j];
        }
 
        // If sum is divisible by the chosen element
        if (sum % arr[i] == 0)
            count++;
    }
 
    // Return the count
    return count;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 10, 4, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countNum(n, arr);
 
    return 0;
}

Java

// Java implementation of the approach
class GFG
{
     
// Function to return the count
// of the required numbers
static int countNum(int N, int arr[])
{
    // To store the count of required numbers
    int count = 0;
    for (int i = 0; i < N; i++)
    {
 
        // Initialize sum to 0
        int sum = 0;
        for (int j = 0; j < N; j++)
        {
 
            // If current element and the
            // chosen element are same
            if (i == j)
                continue;
 
            // Add all other numbers of array
            else
                sum += arr[j];
        }
 
        // If sum is divisible by the chosen element
        if (sum % arr[i] == 0)
            count++;
    }
 
    // Return the count
    return count;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 3, 10, 4, 6, 7 };
    int n = arr.length;
    System.out.println(countNum(n, arr));
}
}
 
// This code is contributed by Code_Mech

Python3

# Python3 implementation of the approach
 
# Function to return the count
# of the required numbers
def countNum(N, arr):
 
    # To store the count of
    # required numbers
    count = 0
 
    for i in range(N):
 
        # Initialize sum to 0
        Sum = 0
        for j in range(N):
 
            # If current element and the
            # chosen element are same
            if (i == j):
                continue
 
            # Add all other numbers of array
            else:
                Sum += arr[j]
 
        # If Sum is divisible by the
        # chosen element
        if (Sum % arr[i] == 0):
            count += 1
     
    # Return the count
    return count
 
# Driver code
arr = [3, 10, 4, 6, 7]
n = len(arr)
print(countNum(n, arr))
 
# This code is contributed
# by Mohit Kumar

C#

// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the count
// of the required numbers
static int countNum(int N, int []arr)
{
    // To store the count of required numbers
    int count = 0;
    for (int i = 0; i < N; i++)
    {
 
        // Initialize sum to 0
        int sum = 0;
        for (int j = 0; j < N; j++)
        {
 
            // If current element and the
            // chosen element are same
            if (i == j)
                continue;
 
            // Add all other numbers of array
            else
                sum += arr[j];
        }
 
        // If sum is divisible by the chosen element
        if (sum % arr[i] == 0)
            count++;
    }
 
    // Return the count
    return count;
}
 
// Driver code
public static void Main()
{
    int []arr = { 3, 10, 4, 6, 7 };
    int n = arr.Length;
    Console.WriteLine(countNum(n, arr));
}
}
 
// This code is contributed by inder_verma..

PHP

<?php
// Php implementation of the approach
 
// Function to return the count
// of the required numbers
function countNum($N, $arr)
{
// To store the count of
// required numbers
$count = 0;
 
for ($i=0;$i<$N;$i++) {
// Initialize sum to 0
    $Sum = 0;
    for ($j = 0; $j < $N; $j++) {
        // If current element and the
        // chosen element are same
        if ($i == $j)
            continue;
 
        // Add all other numbers of array
        else
            $Sum += $arr[$j];
    }
    // If Sum is divisible by the
    // chosen element
    if ($Sum % $arr[$i] == 0)
        $count += 1;
}
// Return the count
    return $count;
}
// Driver code
$arr = array(3, 10, 4, 6, 7);
$n = count($arr);
echo countNum($n, $arr);
 
// This code is contributed
// by Srathore
?>

Javascript

<script>
    // Javascript implementation of the approach
     
    // Function to return the count
    // of the required numbers
    function countNum(N, arr)
    {
        // To store the count of required numbers
        let count = 0;
        for (let i = 0; i < N; i++) {
 
            // Initialize sum to 0
            let sum = 0;
            for (let j = 0; j < N; j++) {
 
                // If current element and the
                // chosen element are same
                if (i == j)
                    continue;
 
                // Add all other numbers of array
                else
                    sum += arr[j];
            }
 
            // If sum is divisible by the chosen element
            if (sum % arr[i] == 0)
                count++;
        }
 
        // Return the count
        return count;
    }
     
    let arr = [ 3, 10, 4, 6, 7 ];
    let n = arr.length;
    document.write(countNum(n, arr));
     
    // This code is contributed by vaibhavrabadiya117
</script>
Producción: 

3

 

Complejidad temporal: O(N 2 )
 

Enfoque eficiente: Ejecute un solo ciclo de 0 a N, calcule la suma de todos los elementos. Ahora ejecuta otro ciclo de 0 a N y si (sum – arr[i]) % arr[i] = 0 entonces incrementa el conteo.
A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the count
// of the required numbers
int countNum(int N, int arr[])
{
    // Initialize sum and count to 0
    int sum = 0, count = 0;
 
    // Calculate sum of all
    // the array elements
    for (int i = 0; i < N; i++)
        sum += arr[i];
 
    for (int i = 0; i < N; i++)
 
        // If current element satisfies the condition
        if ((sum - arr[i]) % arr[i] == 0)
            count++;
 
    // Return the count of required elements
    return count;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 10, 4, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countNum(n, arr);
 
    return 0;
}

Java

// Java implementation of the approach
 
class GFG
{
 
    // Function to return the count
    // of the required numbers
    static int countNum(int N, int arr[])
    {
        // Initialize sum and count to 0
        int sum = 0, count = 0;
 
        // Calculate sum of all
        // the array elements
        for (int i = 0; i < N; i++)
        {
            sum += arr[i];
        }
         
        // If current element satisfies the condition
        for (int i = 0; i < N; i++)
        {
            if ((sum - arr[i]) % arr[i] == 0)
            {
                count++;
            }
        }
 
        // Return the count of required elements
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = {3, 10, 4, 6, 7};
        int n = arr.length;
        System.out.println(countNum(n, arr));
    }
}
 
// This code has been contributed by 29AjayKumar

Python3

# Python3 implementation of the approach
 
# Function to return the count
# of the required numbers
def countNum(N, arr):
     
    # Initialize Sum and count to 0
    Sum, count = 0, 0
 
    # Calculate Sum of all the
    # array elements
    for i in range(N):
        Sum += arr[i]
 
    for i in range(N):
 
        # If current element satisfies
        # the condition
        if ((Sum - arr[i]) % arr[i] == 0):
            count += 1
 
    # Return the count of required
    # elements
    return count
 
# Driver code
arr = [ 3, 10, 4, 6, 7 ]
n = len(arr)
print(countNum(n, arr))
 
# This code is contributed
# by Mohit Kumar

C#

// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return the count
    // of the required numbers
    static int countNum(int N, int []arr)
    {
        // Initialize sum and count to 0
        int sum = 0, count = 0;
 
        // Calculate sum of all
        // the array elements
        for (int i = 0; i < N; i++)
        {
            sum += arr[i];
        }
         
        // If current element satisfies the condition
        for (int i = 0; i < N; i++)
        {
            if ((sum - arr[i]) % arr[i] == 0)
            {
                count++;
            }
        }
 
        // Return the count of required elements
        return count;
    }
 
    // Driver code
    public static void Main()
    {
        int []arr = {3, 10, 4, 6, 7};
        int n = arr.Length;
        Console.WriteLine(countNum(n, arr));
    }
}
 
/* This code contributed by PrinciRaj1992 */

PHP

<?php
// PHP implementation of the approach
 
// Function to return the count
// of the required numbers
function countNum($N, $arr)
{
    // Initialize sum and count to 0
    $sum = 0; $count = 0;
 
    // Calculate sum of all
    // the array elements
    for ($i = 0; $i < $N; $i++)
        $sum += $arr[$i];
 
    for ($i = 0; $i < $N; $i++)
 
        // If current element satisfies
        // the condition
        if (($sum - $arr[$i]) % $arr[$i] == 0)
            $count++;
 
    // Return the count of required elements
    return $count;
}
 
// Driver code
$arr = array(3, 10, 4, 6, 7);
$n = count($arr);
echo countNum($n, $arr);
 
// This code contributed by Rajput-Ji
?>

Javascript

<script>   
    // Javascript implementation of the approach
     
    // Function to return the count
    // of the required numbers
    function countNum(N, arr)
    {
        // Initialize sum and count to 0
        let sum = 0, count = 0;
  
        // Calculate sum of all
        // the array elements
        for (let i = 0; i < N; i++)
        {
            sum += arr[i];
        }
          
        // If current element satisfies the condition
        for (let i = 0; i < N; i++)
        {
            if ((sum - arr[i]) % arr[i] == 0)
            {
                count++;
            }
        }
  
        // Return the count of required elements
        return count;
    }
     
    let arr = [3, 10, 4, 6, 7];
    let n = arr.length;
    document.write(countNum(n, arr));
     
</script>
Producción: 

3

 

Complejidad de tiempo: O(N)
 

Publicación traducida automáticamente

Artículo escrito por Vivek.Pandit y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *