Dada una array arr[] , la tarea es contar el número de elementos de la array que dividen la suma de todos los demás elementos.
Ejemplos:
Entrada: arr[] = {3, 10, 4, 6, 7}
Salida: 3
3 divide (10 + 4 + 6 + 7) es decir, 27
10 divide (3 + 4 + 6 + 7) es decir, 20
6 divide (3 + 10 + 4 + 7) es decir, 24Entrada: arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Salida: 2
Enfoque ingenuo: ejecute dos bucles de 0 a N, calcule la suma de todos los elementos excepto el elemento actual y, si este elemento divide esa suma, incremente el conteo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <iostream> using namespace std; // Function to return the count // of the required numbers int countNum(int N, int arr[]) { // To store the count of required numbers int count = 0; for (int i = 0; i < N; i++) { // Initialize sum to 0 int sum = 0; for (int j = 0; j < N; j++) { // If current element and the // chosen element are same if (i == j) continue; // Add all other numbers of array else sum += arr[j]; } // If sum is divisible by the chosen element if (sum % arr[i] == 0) count++; } // Return the count return count; } // Driver code int main() { int arr[] = { 3, 10, 4, 6, 7 }; int n = sizeof(arr) / sizeof(arr[0]); cout << countNum(n, arr); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the count // of the required numbers static int countNum(int N, int arr[]) { // To store the count of required numbers int count = 0; for (int i = 0; i < N; i++) { // Initialize sum to 0 int sum = 0; for (int j = 0; j < N; j++) { // If current element and the // chosen element are same if (i == j) continue; // Add all other numbers of array else sum += arr[j]; } // If sum is divisible by the chosen element if (sum % arr[i] == 0) count++; } // Return the count return count; } // Driver code public static void main(String[] args) { int arr[] = { 3, 10, 4, 6, 7 }; int n = arr.length; System.out.println(countNum(n, arr)); } } // This code is contributed by Code_Mech
Python3
# Python3 implementation of the approach # Function to return the count # of the required numbers def countNum(N, arr): # To store the count of # required numbers count = 0 for i in range(N): # Initialize sum to 0 Sum = 0 for j in range(N): # If current element and the # chosen element are same if (i == j): continue # Add all other numbers of array else: Sum += arr[j] # If Sum is divisible by the # chosen element if (Sum % arr[i] == 0): count += 1 # Return the count return count # Driver code arr = [3, 10, 4, 6, 7] n = len(arr) print(countNum(n, arr)) # This code is contributed # by Mohit Kumar
C#
// C# implementation of the approach using System; class GFG { // Function to return the count // of the required numbers static int countNum(int N, int []arr) { // To store the count of required numbers int count = 0; for (int i = 0; i < N; i++) { // Initialize sum to 0 int sum = 0; for (int j = 0; j < N; j++) { // If current element and the // chosen element are same if (i == j) continue; // Add all other numbers of array else sum += arr[j]; } // If sum is divisible by the chosen element if (sum % arr[i] == 0) count++; } // Return the count return count; } // Driver code public static void Main() { int []arr = { 3, 10, 4, 6, 7 }; int n = arr.Length; Console.WriteLine(countNum(n, arr)); } } // This code is contributed by inder_verma..
PHP
<?php // Php implementation of the approach // Function to return the count // of the required numbers function countNum($N, $arr) { // To store the count of // required numbers $count = 0; for ($i=0;$i<$N;$i++) { // Initialize sum to 0 $Sum = 0; for ($j = 0; $j < $N; $j++) { // If current element and the // chosen element are same if ($i == $j) continue; // Add all other numbers of array else $Sum += $arr[$j]; } // If Sum is divisible by the // chosen element if ($Sum % $arr[$i] == 0) $count += 1; } // Return the count return $count; } // Driver code $arr = array(3, 10, 4, 6, 7); $n = count($arr); echo countNum($n, $arr); // This code is contributed // by Srathore ?>
Javascript
<script> // Javascript implementation of the approach // Function to return the count // of the required numbers function countNum(N, arr) { // To store the count of required numbers let count = 0; for (let i = 0; i < N; i++) { // Initialize sum to 0 let sum = 0; for (let j = 0; j < N; j++) { // If current element and the // chosen element are same if (i == j) continue; // Add all other numbers of array else sum += arr[j]; } // If sum is divisible by the chosen element if (sum % arr[i] == 0) count++; } // Return the count return count; } let arr = [ 3, 10, 4, 6, 7 ]; let n = arr.length; document.write(countNum(n, arr)); // This code is contributed by vaibhavrabadiya117 </script>
3
Complejidad temporal: O(N 2 )
Enfoque eficiente: Ejecute un solo ciclo de 0 a N, calcule la suma de todos los elementos. Ahora ejecuta otro ciclo de 0 a N y si (sum – arr[i]) % arr[i] = 0 entonces incrementa el conteo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <iostream> using namespace std; // Function to return the count // of the required numbers int countNum(int N, int arr[]) { // Initialize sum and count to 0 int sum = 0, count = 0; // Calculate sum of all // the array elements for (int i = 0; i < N; i++) sum += arr[i]; for (int i = 0; i < N; i++) // If current element satisfies the condition if ((sum - arr[i]) % arr[i] == 0) count++; // Return the count of required elements return count; } // Driver code int main() { int arr[] = { 3, 10, 4, 6, 7 }; int n = sizeof(arr) / sizeof(arr[0]); cout << countNum(n, arr); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the count // of the required numbers static int countNum(int N, int arr[]) { // Initialize sum and count to 0 int sum = 0, count = 0; // Calculate sum of all // the array elements for (int i = 0; i < N; i++) { sum += arr[i]; } // If current element satisfies the condition for (int i = 0; i < N; i++) { if ((sum - arr[i]) % arr[i] == 0) { count++; } } // Return the count of required elements return count; } // Driver code public static void main(String[] args) { int arr[] = {3, 10, 4, 6, 7}; int n = arr.length; System.out.println(countNum(n, arr)); } } // This code has been contributed by 29AjayKumar
Python3
# Python3 implementation of the approach # Function to return the count # of the required numbers def countNum(N, arr): # Initialize Sum and count to 0 Sum, count = 0, 0 # Calculate Sum of all the # array elements for i in range(N): Sum += arr[i] for i in range(N): # If current element satisfies # the condition if ((Sum - arr[i]) % arr[i] == 0): count += 1 # Return the count of required # elements return count # Driver code arr = [ 3, 10, 4, 6, 7 ] n = len(arr) print(countNum(n, arr)) # This code is contributed # by Mohit Kumar
C#
// C# implementation of the approach using System; class GFG { // Function to return the count // of the required numbers static int countNum(int N, int []arr) { // Initialize sum and count to 0 int sum = 0, count = 0; // Calculate sum of all // the array elements for (int i = 0; i < N; i++) { sum += arr[i]; } // If current element satisfies the condition for (int i = 0; i < N; i++) { if ((sum - arr[i]) % arr[i] == 0) { count++; } } // Return the count of required elements return count; } // Driver code public static void Main() { int []arr = {3, 10, 4, 6, 7}; int n = arr.Length; Console.WriteLine(countNum(n, arr)); } } /* This code contributed by PrinciRaj1992 */
PHP
<?php // PHP implementation of the approach // Function to return the count // of the required numbers function countNum($N, $arr) { // Initialize sum and count to 0 $sum = 0; $count = 0; // Calculate sum of all // the array elements for ($i = 0; $i < $N; $i++) $sum += $arr[$i]; for ($i = 0; $i < $N; $i++) // If current element satisfies // the condition if (($sum - $arr[$i]) % $arr[$i] == 0) $count++; // Return the count of required elements return $count; } // Driver code $arr = array(3, 10, 4, 6, 7); $n = count($arr); echo countNum($n, $arr); // This code contributed by Rajput-Ji ?>
Javascript
<script> // Javascript implementation of the approach // Function to return the count // of the required numbers function countNum(N, arr) { // Initialize sum and count to 0 let sum = 0, count = 0; // Calculate sum of all // the array elements for (let i = 0; i < N; i++) { sum += arr[i]; } // If current element satisfies the condition for (let i = 0; i < N; i++) { if ((sum - arr[i]) % arr[i] == 0) { count++; } } // Return the count of required elements return count; } let arr = [3, 10, 4, 6, 7]; let n = arr.length; document.write(countNum(n, arr)); </script>
3
Complejidad de tiempo: O(N)
Publicación traducida automáticamente
Artículo escrito por Vivek.Pandit y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA