Dado un árbol binario, la tarea es contar el número de Nodes con dos hijos en un nivel L dado .
Ejemplos:
Input: 1 / \ 2 3 / \ \ 4 5 6 / / \ 7 8 9 L = 2 Output: 1 Input: 20 / \ 8 22 / \ / \ 5 3 4 25 / \ / \ \ 1 10 2 14 6 L = 3 Output: 2
Enfoque: Inicialice una cuenta variable = 0 . Atraviese recursivamente el árbol en orden de nivel. Si el nivel actual es el mismo que el nivel dado, verifique si el Node actual tiene dos hijos. Si tiene dos hijos, incremente la variable count .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find number of full nodes // at a given level #include <bits/stdc++.h> using namespace std; // A binary tree node struct Node { int data; struct Node *left, *right; }; // Utility function to allocate memory for a new node struct Node* newNode(int data) { struct Node* node = new (struct Node); node->data = data; node->left = node->right = NULL; return (node); } // Function that returns the height of binary tree int height(struct Node* root) { if (root == NULL) return 0; int lheight = height(root->left); int rheight = height(root->right); return max(lheight, rheight) + 1; } // Level Order traversal to find the number of nodes // having two children void LevelOrder(struct Node* root, int level, int& count) { if (root == NULL) return; if (level == 1 && root->left && root->right) count++; else if (level > 1) { LevelOrder(root->left, level - 1, count); LevelOrder(root->right, level - 1, count); } } // Returns the number of full nodes // at a given level int CountFullNodes(struct Node* root, int L) { // Stores height of tree int h = height(root); // Stores count of nodes at a given level // that have two children int count = 0; LevelOrder(root, L, count); return count; } // Driver code int main() { struct Node* root = newNode(7); root->left = newNode(5); root->right = newNode(6); root->left->left = newNode(8); root->left->right = newNode(1); root->left->left->left = newNode(2); root->left->left->right = newNode(11); root->right->left = newNode(3); root->right->right = newNode(9); root->right->right->right = newNode(13); root->right->right->left = newNode(10); root->right->right->right->left = newNode(4); root->right->right->right->right = newNode(12); int L = 3; cout << CountFullNodes(root, L); return 0; }
Java
// Java program to find number of full nodes // at a given level class GFG { //INT class static class INT { int a; } // A binary tree node static class Node { int data; Node left, right; }; // Utility function to allocate memory for a new node static Node newNode(int data) { Node node = new Node(); node.data = data; node.left = node.right = null; return (node); } // Function that returns the height of binary tree static int height(Node root) { if (root == null) return 0; int lheight = height(root.left); int rheight = height(root.right); return Math.max(lheight, rheight) + 1; } // Level Order traversal to find the number of nodes // having two children static void LevelOrder( Node root, int level, INT count) { if (root == null) return; if (level == 1 && root.left!=null && root.right!=null) count.a++; else if (level > 1) { LevelOrder(root.left, level - 1, count); LevelOrder(root.right, level - 1, count); } } // Returns the number of full nodes // at a given level static int CountFullNodes( Node root, int L) { // Stores height of tree int h = height(root); // Stores count of nodes at a given level // that have two children INT count =new INT(); count.a = 0; LevelOrder(root, L, count); return count.a; } // Driver code public static void main(String args[]) { Node root = newNode(7); root.left = newNode(5); root.right = newNode(6); root.left.left = newNode(8); root.left.right = newNode(1); root.left.left.left = newNode(2); root.left.left.right = newNode(11); root.right.left = newNode(3); root.right.right = newNode(9); root.right.right.right = newNode(13); root.right.right.left = newNode(10); root.right.right.right.left = newNode(4); root.right.right.right.right = newNode(12); int L = 3; System.out.print( CountFullNodes(root, L)); } } // This code is contributed by Arnab Kundu
Python3
# Python3 program to find number of # full nodes at a given level # INT class class INT: def __init__(self): self.a = 0 # A binary tree node class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Utility function to allocate # memory for a new node def newNode(data): node = Node(data) return node # Function that returns the # height of binary tree def height(root): if (root == None): return 0; lheight = height(root.left); rheight = height(root.right); return max(lheight, rheight) + 1; # Level Order traversal to find the # number of nodes having two children def LevelOrder(root, level, count): if (root == None): return; if (level == 1 and root.left != None and root.right != None): count.a += 1 elif (level > 1): LevelOrder(root.left, level - 1, count); LevelOrder(root.right, level - 1, count); # Returns the number of full nodes # at a given level def CountFullNodes(root, L): # Stores height of tree h = height(root); # Stores count of nodes at a # given level that have two children count = INT() LevelOrder(root, L, count); return count.a # Driver code if __name__=="__main__": root = newNode(7); root.left = newNode(5); root.right = newNode(6); root.left.left = newNode(8); root.left.right = newNode(1); root.left.left.left = newNode(2); root.left.left.right = newNode(11); root.right.left = newNode(3); root.right.right = newNode(9); root.right.right.right = newNode(13); root.right.right.left = newNode(10); root.right.right.right.left = newNode(4); root.right.right.right.right = newNode(12); L = 3; print(CountFullNodes(root, L)) # This code is contributed by rutvik_56
C#
// C# program to find number of full nodes // at a given level using System; class GFG { // INT class public class INT { public int a; } // A binary tree node public class Node { public int data; public Node left, right; }; // Utility function to allocate memory for a new node static Node newNode(int data) { Node node = new Node(); node.data = data; node.left = node.right = null; return (node); } // Function that returns the height of binary tree static int height(Node root) { if (root == null) return 0; int lheight = height(root.left); int rheight = height(root.right); return Math.Max(lheight, rheight) + 1; } // Level Order traversal to find the number of nodes // having two children static void LevelOrder( Node root, int level, INT count) { if (root == null) return; if (level == 1 && root.left!=null && root.right!=null) count.a++; else if (level > 1) { LevelOrder(root.left, level - 1, count); LevelOrder(root.right, level - 1, count); } } // Returns the number of full nodes // at a given level static int CountFullNodes( Node root, int L) { // Stores height of tree int h = height(root); // Stores count of nodes at a given level // that have two children INT count =new INT(); count.a = 0; LevelOrder(root, L, count); return count.a; } // Driver code public static void Main(String []args) { Node root = newNode(7); root.left = newNode(5); root.right = newNode(6); root.left.left = newNode(8); root.left.right = newNode(1); root.left.left.left = newNode(2); root.left.left.right = newNode(11); root.right.left = newNode(3); root.right.right = newNode(9); root.right.right.right = newNode(13); root.right.right.left = newNode(10); root.right.right.right.left = newNode(4); root.right.right.right.right = newNode(12); int L = 3; Console.Write( CountFullNodes(root, L)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // Javascript program to find number // of full nodes at a given level // INT class let a = 0; // A binary tree node class Node { constructor(data) { this.left = null; this.right = null; this.data = data; } } // Utility function to allocate memory // for a new node function newNode(data) { let node = new Node(data); return (node); } // Function that returns the height // of binary tree function height(root) { if (root == null) return 0; let lheight = height(root.left); let rheight = height(root.right); return Math.max(lheight, rheight) + 1; } // Level Order traversal to find the number // of nodes having two children function LevelOrder(root, level) { if (root == null) return; if (level == 1 && root.left != null && root.right != null) a++; else if (level > 1) { LevelOrder(root.left, level - 1); LevelOrder(root.right, level - 1); } } // Returns the number of full nodes // at a given level function CountFullNodes(root, L) { // Stores height of tree let h = height(root); LevelOrder(root, L); return a; } // Driver code let root = newNode(7); root.left = newNode(5); root.right = newNode(6); root.left.left = newNode(8); root.left.right = newNode(1); root.left.left.left = newNode(2); root.left.left.right = newNode(11); root.right.left = newNode(3); root.right.right = newNode(9); root.right.right.right = newNode(13); root.right.right.left = newNode(10); root.right.right.right.left = newNode(4); root.right.right.right.right = newNode(12); let L = 3; document.write(CountFullNodes(root, L)); // This code is contributed by mukesh07 </script>
Producción:
2
Complejidad temporal : O(N)
Espacio auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por Sakshi_Srivastava y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA