Cuente los Nodes con dos hijos en el nivel L en un árbol binario

Dado un árbol binario, la tarea es contar el número de Nodes con dos hijos en un nivel L dado .

Ejemplos: 

Input: 
          1
         /  \
        2    3
       / \    \
      4   5    6
         /    / \
        7    8   9
L = 2
Output: 1

Input:
          20
         /   \
        8     22
       / \    / \
      5   3  4   25
     / \  / \     \
    1  10 2  14    6
L = 3
Output: 2

Enfoque: Inicialice una cuenta variable = 0 . Atraviese recursivamente el árbol en orden de nivel. Si el nivel actual es el mismo que el nivel dado, verifique si el Node actual tiene dos hijos. Si tiene dos hijos, incremente la variable count .

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program to find number of full nodes
// at a given level
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Utility function to allocate memory for a new node
struct Node* newNode(int data)
{
    struct Node* node = new (struct Node);
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Function that returns the height of binary tree
int height(struct Node* root)
{
    if (root == NULL)
        return 0;
 
    int lheight = height(root->left);
    int rheight = height(root->right);
 
    return max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
void LevelOrder(struct Node* root, int level, int& count)
{
    if (root == NULL)
        return;
 
    if (level == 1 && root->left && root->right)
        count++;
 
    else if (level > 1) {
        LevelOrder(root->left, level - 1, count);
        LevelOrder(root->right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
int CountFullNodes(struct Node* root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    int count = 0;
 
    LevelOrder(root, L, count);
 
    return count;
}
 
// Driver code
int main()
{
    struct Node* root = newNode(7);
    root->left = newNode(5);
    root->right = newNode(6);
    root->left->left = newNode(8);
    root->left->right = newNode(1);
    root->left->left->left = newNode(2);
    root->left->left->right = newNode(11);
    root->right->left = newNode(3);
    root->right->right = newNode(9);
    root->right->right->right = newNode(13);
    root->right->right->left = newNode(10);
    root->right->right->right->left = newNode(4);
    root->right->right->right->right = newNode(12);
 
    int L = 3;
 
    cout << CountFullNodes(root, L);
 
    return 0;
}

Java

// Java program to find number of full nodes
// at a given level
class GFG
{
 
//INT class
static class INT
{
    int a;
}
 
// A binary tree node
static class Node
{
    int data;
    Node left, right;
};
 
// Utility function to allocate memory for a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function that returns the height of binary tree
static int height(Node root)
{
    if (root == null)
        return 0;
 
    int lheight = height(root.left);
    int rheight = height(root.right);
 
    return Math.max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
static void LevelOrder( Node root, int level, INT count)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left!=null && root.right!=null)
        count.a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1, count);
        LevelOrder(root.right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
static int CountFullNodes( Node root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    INT count =new INT();
    count.a = 0;
 
    LevelOrder(root, L, count);
 
    return count.a;
}
 
// Driver code
public static void main(String args[])
{
    Node root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
 
    int L = 3;
 
    System.out.print( CountFullNodes(root, L));
 
}
}
 
// This code is contributed by Arnab Kundu

Python3

# Python3 program to find number of
# full nodes at a given level
 
# INT class
class INT:
  
    def __init__(self):
         
        self.a = 0
 
# A binary tree node
class Node:
     
    def __init__(self, data):
         
        self.left = None
        self.right = None
        self.data = data
  
# Utility function to allocate
# memory for a new node
def newNode(data):
 
    node = Node(data)
     
    return node
 
# Function that returns the
# height of binary tree
def height(root):
 
    if (root == None):
        return 0;
  
    lheight = height(root.left);
    rheight = height(root.right);
  
    return max(lheight, rheight) + 1;
 
# Level Order traversal to find the
# number of nodes having two children
def LevelOrder(root, level, count):
 
    if (root == None):
        return;
  
    if (level == 1 and
        root.left != None and
       root.right != None):
        count.a += 1
  
    elif (level > 1):
        LevelOrder(root.left,
                   level - 1, count);
        LevelOrder(root.right,
                   level - 1, count);
  
# Returns the number of full nodes
# at a given level
def CountFullNodes(root, L):
 
    # Stores height of tree
    h = height(root);
  
    # Stores count of nodes at a
    # given level that have two children
    count = INT()
  
    LevelOrder(root, L, count);
  
    return count.a
 
# Driver code   
if __name__=="__main__":
     
    root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
  
    L = 3;
  
    print(CountFullNodes(root, L))
     
# This code is contributed by rutvik_56

C#

// C# program to find number of full nodes
// at a given level
using System;
 
class GFG
{
 
// INT class
public class INT
{
    public int a;
}
 
// A binary tree node
public class Node
{
    public int data;
    public Node left, right;
};
 
// Utility function to allocate memory for a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function that returns the height of binary tree
static int height(Node root)
{
    if (root == null)
        return 0;
 
    int lheight = height(root.left);
    int rheight = height(root.right);
 
    return Math.Max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
static void LevelOrder( Node root, int level, INT count)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left!=null && root.right!=null)
        count.a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1, count);
        LevelOrder(root.right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
static int CountFullNodes( Node root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    INT count =new INT();
    count.a = 0;
 
    LevelOrder(root, L, count);
 
    return count.a;
}
 
// Driver code
public static void Main(String []args)
{
    Node root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
 
    int L = 3;
 
    Console.Write( CountFullNodes(root, L));
 
}
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
 
// Javascript program to find number
// of full nodes at a given level
 
// INT class
let a = 0;
 
// A binary tree node
class Node
{
    constructor(data)
    {
        this.left = null;
        this.right = null;
        this.data = data;
    }
}
 
// Utility function to allocate memory
// for a new node
function newNode(data)
{
    let node = new Node(data);
    return (node);
}
 
// Function that returns the height
// of binary tree
function height(root)
{
    if (root == null)
        return 0;
 
    let lheight = height(root.left);
    let rheight = height(root.right);
 
    return Math.max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number
// of nodes having two children
function LevelOrder(root, level)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left != null &&
                     root.right != null)
        a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1);
        LevelOrder(root.right, level - 1);
    }
}
 
// Returns the number of full nodes
// at a given level
function CountFullNodes(root, L)
{
     
    // Stores height of tree
    let h = height(root);
 
    LevelOrder(root, L);
 
    return a;
}
 
// Driver code
let root = newNode(7);
root.left = newNode(5);
root.right = newNode(6);
root.left.left = newNode(8);
root.left.right = newNode(1);
root.left.left.left = newNode(2);
root.left.left.right = newNode(11);
root.right.left = newNode(3);
root.right.right = newNode(9);
root.right.right.right = newNode(13);
root.right.right.left = newNode(10);
root.right.right.right.left = newNode(4);
root.right.right.right.right = newNode(12);
 
let L = 3;
 
document.write(CountFullNodes(root, L));
 
// This code is contributed by mukesh07
 
</script>
Producción: 

2

 

Complejidad temporal : O(N) 
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por Sakshi_Srivastava y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *