Dado un árbol y los pesos (en forma de strings) de todos los Nodes, la tarea es contar los Nodes cuya string ponderada es un anagrama con la string dada str .
Ejemplos:
Aporte:
str = “geek”
Salida: 2
Solo las strings ponderadas de los Nodes 2 y 6
son anagramas de la string dada “geek”.
Enfoque: Realice dfs en el árbol y para cada Node, verifique si su string ponderada es un anagrama con la string dada o no. De lo contrario, incremente el conteo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; string s; int cnt = 0; vector<int> graph[100]; vector<string> weight(100); // Function that return true if both // the strings are anagram of each other bool anagram(string x, string s) { sort(x.begin(), x.end()); sort(s.begin(), s.end()); if (x == s) return true; else return false; } // Function to perform dfs void dfs(int node, int parent) { // If current node's weighted // string is an anagram of // the given string s if (anagram(weight[node], s)) cnt += 1; for (int to : graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code int main() { s = "geek"; // Weights of the nodes weight[1] = "eeggk"; weight[2] = "geek"; weight[3] = "gekrt"; weight[4] = "tree"; weight[5] = "eetr"; weight[6] = "egek"; // Edges of the tree graph[1].push_back(2); graph[2].push_back(3); graph[2].push_back(4); graph[1].push_back(5); graph[5].push_back(6); dfs(1, 1); cout << cnt; return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { static String s; static int cnt = 0; static Vector<Integer>[] graph = new Vector[100]; static String[] weight = new String[100]; // Function that return true if both // the Strings are anagram of each other static boolean anagram(String x, String s) { x = sort(x); s = sort(s); if (x.equals(s)) return true; else return false; } static String sort(String inputString) { // convert input string to char array char tempArray[] = inputString.toCharArray(); // sort tempArray Arrays.sort(tempArray); // return new sorted string return new String(tempArray); } // Function to perform dfs static void dfs(int node, int parent) { // If current node's weighted // String is an anagram of // the given String s if (anagram(weight[node], s)) cnt += 1; for (int to : graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code public static void main(String[] args) { s = "geek"; for (int i = 0; i < 100; i++) graph[i] = new Vector<Integer>(); // Weights of the nodes weight[1] = "eeggk"; weight[2] = "geek"; weight[3] = "gekrt"; weight[4] = "tree"; weight[5] = "eetr"; weight[6] = "egek"; // Edges of the tree graph[1].add(2); graph[2].add(3); graph[2].add(4); graph[1].add(5); graph[5].add(6); dfs(1, 1); System.out.print(cnt); } } // This code is contributed by Rajput-Ji
Python3
# Python3 implementation of the approach cnt = 0 graph = [[] for i in range(100)] weight = [0] * 100 # Function that return true if both # the strings are anagram of each other def anagram(x, s): x = sorted(list(x)) s = sorted(list(s)) if (x == s): return True else: return False # Function to perform dfs def dfs(node, parent): global cnt, s # If weight of the current node # string is an anagram of # the given string s if (anagram(weight[node], s)): cnt += 1 for to in graph[node]: if (to == parent): continue dfs(to, node) # Driver code s = "geek" # Weights of the nodes weight[1] = "eeggk" weight[2] = "geek" weight[3] = "gekrt" weight[4] = "tree" weight[5] = "eetr" weight[6] = "egek" # Edges of the tree graph[1].append(2) graph[2].append(3) graph[2].append(4) graph[1].append(5) graph[5].append(6) dfs(1, 1) print(cnt) # This code is contributed by SHUBHAMSINGH10
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static String s; static int cnt = 0; static List<int>[] graph = new List<int>[100]; static String[] weight = new String[100]; // Function that return true if both // the Strings are anagram of each other static bool anagram(String x, String s) { x = sort(x); s = sort(s); if (x.Equals(s)) return true; else return false; } static String sort(String inputString) { // convert input string to char array char []tempArray = inputString.ToCharArray(); // sort tempArray Array.Sort(tempArray); // return new sorted string return new String(tempArray); } // Function to perform dfs static void dfs(int node, int parent) { // If current node's weighted // String is an anagram of // the given String s if (anagram(weight[node], s)) cnt += 1; foreach (int to in graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code public static void Main(String[] args) { s = "geek"; for (int i = 0; i < 100; i++) graph[i] = new List<int>(); // Weights of the nodes weight[1] = "eeggk"; weight[2] = "geek"; weight[3] = "gekrt"; weight[4] = "tree"; weight[5] = "eetr"; weight[6] = "egek"; // Edges of the tree graph[1].Add(2); graph[2].Add(3); graph[2].Add(4); graph[1].Add(5); graph[5].Add(6); dfs(1, 1); Console.Write(cnt); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // Javascript implementation of the approach let s; let cnt = 0; let graph = new Array(100); let weight = new Array(100); for(let i = 0; i < 100; i++) { graph[i] = []; weight[i] = 0; } const sort1 = str => str.split('').sort((a, b) => a.localeCompare(b)).join(''); // Function that return true if both // the strings are anagram of each other function anagram(x, s) { x = sort1(x); s = sort1(s); if (x == s) return true; else return false; } // Function to perform dfs function dfs(node, parent) { // If current node's weighted // string is an anagram of // the given string s if (anagram(weight[node], s)) cnt += 1; for(let to = 0; to < graph[node].length; to++) { if(graph[node][to] == parent) continue dfs(graph[node][to], node); } } // Driver code s = "geek"; // Weights of the nodes weight[1] = "eeggk"; weight[2] = "geek"; weight[3] = "gekrt"; weight[4] = "tree"; weight[5] = "eetr"; weight[6] = "egek"; // Edges of the tree graph[1].push(2); graph[2].push(3); graph[2].push(4); graph[1].push(5); graph[5].push(6); dfs(1, 1); document.write(cnt); // This code is contributed by Dharanendra L V. </script>
Producción:
2
Análisis de Complejidad:
- Complejidad de tiempo: O(N*(S*log(S))).
En dfs, cada Node del árbol se procesa una vez y, por lo tanto, la complejidad debida a dfs es O(N) si hay un total de N Nodes en el árbol. Además, para procesar cada Node se usa la función sort() que tiene una complejidad de O(S*log(S)) donde S es la longitud de la string ponderada. Por lo tanto, la complejidad temporal es O(N*(S*log(S))) donde S es la longitud máxima de la string de peso en el árbol. - Espacio Auxiliar : O(1).
No se requiere ningún espacio adicional, por lo que la complejidad del espacio es constante.
Publicación traducida automáticamente
Artículo escrito por mohit kumar 29 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA