Dado un árbol y los pesos de todos los Nodes, la tarea es contar el número de Nodes cuya suma de dígitos de pesos es impar.
Ejemplos:
Aporte:
Salida: 3
Node 1: digitSum(144) = 1 + 4 + 4 = 9
Node 2: digitSum(1234) = 1 + 2 + 3 + 4 = 10
Node 3: digitSum(21) = 2 + 1 = 3
Node 4 : digitSum(5) = 5
Node 5: digitSum(77) = 7 + 7 = 14
Solo la suma de dígitos de los pesos de los Nodes 1, 3 y 4 son impares.
Enfoque: Realice dfs en el árbol y para cada Node, verifique si la suma de los dígitos de su peso es impar. Si es así, entonces incremente el conteo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; int ans = 0; vector<int> graph[100]; vector<int> weight(100); // Function to return the // sum of the digits of n int digitSum(int n) { int sum = 0; while (n) { sum += n % 10; n = n / 10; } return sum; } // Function to perform dfs void dfs(int node, int parent) { // If sum of the digits of current node's // weight is odd then increment ans int sum = digitSum(weight[node]); if (sum % 2 == 1) ans += 1; for (int to : graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code int main() { // Weights of the node weight[1] = 144; weight[2] = 1234; weight[3] = 21; weight[4] = 5; weight[5] = 77; // Edges of the tree graph[1].push_back(2); graph[2].push_back(3); graph[2].push_back(4); graph[1].push_back(5); dfs(1, 1); cout << ans; return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { static int ans = 0; static Vector<Integer>[] graph = new Vector[100]; static Integer[] weight = new Integer[100]; // Function to return the // sum of the digits of n static int digitSum(int n) { int sum = 0; while (n > 0) { sum += n % 10; n = n / 10; } return sum; } // Function to perform dfs static void dfs(int node, int parent) { // If sum of the digits of current node's // weight is odd then increment ans int sum = digitSum(weight[node]); if (sum % 2 == 1) ans += 1; for (int to : graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code public static void main(String[] args) { for (int i = 0; i < 100; i++) graph[i] = new Vector<Integer>(); // Weights of the node weight[1] = 144; weight[2] = 1234; weight[3] = 21; weight[4] = 5; weight[5] = 77; // Edges of the tree graph[1].add(2); graph[2].add(3); graph[2].add(4); graph[1].add(5); dfs(1, 1); System.out.print(ans); } } // This code is contributed by Rajput-Ji
Python3
# Python3 implementation of the approach ans = 0 graph = [[] for i in range(100)] weight = [0] * 100 # Function to return the # sum of the digits of n def digitSum(n): sum = 0 while (n): sum += n % 10 n = n // 10 return sum # Function to perform dfs def dfs(node, parent): global ans # If sum of the digits of current node's # weight is odd then increment ans sum = digitSum(weight[node]) if (sum % 2 == 1): ans += 1 for to in graph[node]: if (to == parent): continue dfs(to, node) # Driver code # Weights of the node weight[1] = 144 weight[2] = 1234 weight[3] = 21 weight[4] = 5 weight[5] = 77 # Edges of the tree graph[1].append(2) graph[2].append(3) graph[2].append(4) graph[1].append(5) dfs(1, 1) print(ans) # This code is contributed by SHUBHAMSINGH10
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static int ans = 0; static List<int>[] graph = new List<int>[100]; static int[] weight = new int[100]; // Function to return the // sum of the digits of n static int digitSum(int n) { int sum = 0; while (n > 0) { sum += n % 10; n = n / 10; } return sum; } // Function to perform dfs static void dfs(int node, int parent) { // If sum of the digits of current node's // weight is odd then increment ans int sum = digitSum(weight[node]); if (sum % 2 == 1) ans += 1; foreach (int to in graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code public static void Main(String[] args) { for (int i = 0; i < 100; i++) graph[i] = new List<int>(); // Weights of the node weight[1] = 144; weight[2] = 1234; weight[3] = 21; weight[4] = 5; weight[5] = 77; // Edges of the tree graph[1].Add(2); graph[2].Add(3); graph[2].Add(4); graph[1].Add(5); dfs(1, 1); Console.Write(ans); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // JavaScript implementation of the approach var ans = 0; var graph = Array.from(Array(100), ()=>Array()); var weight = Array(100); // Function to return the // sum of the digits of n function digitSum(n) { var sum = 0; while (n > 0) { sum += n % 10; n = parseInt( n / 10); } return sum; } // Function to perform dfs function dfs(node, parent) { // If sum of the digits of current node's // weight is odd then increment ans var sum = digitSum(weight[node]); if (sum % 2 == 1) ans += 1; for(var to of graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code for (var i = 0; i < 100; i++) graph[i] = []; // Weights of the node weight[1] = 144; weight[2] = 1234; weight[3] = 21; weight[4] = 5; weight[5] = 77; // Edges of the tree graph[1].push(2); graph[2].push(3); graph[2].push(4); graph[1].push(5); dfs(1, 1); document.write(ans); </script>
3
Análisis de Complejidad:
- Complejidad temporal: O(N).
En DFS, cada Node del árbol se procesa una vez y, por lo tanto, la complejidad debida al dfs es O(N) para N Nodes en el árbol. Por lo tanto, la complejidad del tiempo es O(N). - Espacio Auxiliar: O(1).
No se requiere ningún espacio adicional, por lo que la complejidad del espacio es constante.
Publicación traducida automáticamente
Artículo escrito por mohit kumar 29 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA