Dada una array de N números. Averigüe el número de pares i y j tales que i < j y A i y A j tienen al menos un dígito común (por ejemplo, (11, 19) tienen 1 dígito común pero (36, 48) no tienen dígito común)
Ejemplos:
Entrada: A[] = { 10, 12, 24 }
Salida: 2
Explicación: Dos pares válidos son (10, 12) y (12, 24) que tienen al menos un dígito común
Método 1 (Fuerza bruta) Un enfoque ingenuo para resolver este problema es ejecutar dos bucles anidados y considerar todos los pares posibles. Podemos verificar si los dos números tienen al menos un dígito común, extrayendo cada dígito del primer número e intentando encontrarlo en los dígitos extraídos del segundo número. La tarea sería mucho más fácil, simplemente los convertimos en strings.
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP Program to count pairs in an array // with some common digit #include <bits/stdc++.h> using namespace std; // Returns true if the pair is valid, // otherwise false bool checkValidPair(int num1, int num2) { // converting integers to strings string s1 = to_string(num1); string s2 = to_string(num2); // Iterate over the strings and check // if a character in first string is also // present in second string, return true for (int i = 0; i < s1.size(); i++) for (int j = 0; j < s2.size(); j++) if (s1[i] == s2[j]) return true; // No common digit found return false; } // Returns the number of valid pairs int countPairs(int arr[], int n) { int numberOfPairs = 0; // Iterate over all possible pairs for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) if (checkValidPair(arr[i], arr[j])) numberOfPairs++; return numberOfPairs; } // Driver Code to test above functions int main() { int arr[] = { 10, 12, 24 }; int n = sizeof(arr) / sizeof(arr[0]); cout << countPairs(arr, n) << endl; return 0; }
Java
// Java Program to count // pairs in an array // with some common digit import java.io.*; class GFG { // Returns true if the pair // is valid, otherwise false static boolean checkValidPair(int num1, int num2) { // converting integers // to strings String s1 = Integer.toString(num1); String s2 = Integer.toString(num2); // Iterate over the strings // and check if a character // in first string is also // present in second string, // return true for (int i = 0; i < s1.length(); i++) for (int j = 0; j < s2.length(); j++) if (s1.charAt(i) == s2.charAt(j)) return true; // No common // digit found return false; } // Returns the number // of valid pairs static int countPairs(int []arr, int n) { int numberOfPairs = 0; // Iterate over all // possible pairs for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) if (checkValidPair(arr[i], arr[j])) numberOfPairs++; return numberOfPairs; } // Driver Code public static void main(String args[]) { int []arr = new int[]{ 10, 12, 24 }; int n = arr.length; System.out.print(countPairs(arr, n)); } } // This code is contributed // by manish shaw.
Python3
# Python3 Program to count pairs in # an array with some common digit # Returns true if the pair is # valid, otherwise false def checkValidPair(num1, num2) : # converting integers to strings s1 = str(num1) s2 = str(num2) # Iterate over the strings and check if # a character in first string is also # present in second string, return true for i in range(len(s1)) : for j in range(len(s2)) : if (s1[i] == s2[j]) : return True; # No common digit found return False; # Returns the number of valid pairs def countPairs(arr, n) : numberOfPairs = 0 # Iterate over all possible pairs for i in range(n) : for j in range(i + 1, n) : if (checkValidPair(arr[i], arr[j])) : numberOfPairs += 1 return numberOfPairs # Driver Code if __name__ == "__main__" : arr = [ 10, 12, 24 ] n = len(arr) print(countPairs(arr, n)) # This code is contributed by Ryuga
C#
// C# Program to count pairs in an array // with some common digit using System; class GFG { // Returns true if the pair is valid, // otherwise false static bool checkValidPair(int num1, int num2) { // converting integers to strings string s1 = num1.ToString(); string s2 = num2.ToString(); // Iterate over the strings and check // if a character in first string is also // present in second string, return true for (int i = 0; i < s1.Length; i++) for (int j = 0; j < s2.Length; j++) if (s1[i] == s2[j]) return true; // No common digit found return false; } // Returns the number of valid pairs static int countPairs(int []arr, int n) { int numberOfPairs = 0; // Iterate over all possible pairs for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) if (checkValidPair(arr[i], arr[j])) numberOfPairs++; return numberOfPairs; } // Driver Code to test above functions static void Main() { int []arr = new int[]{ 10, 12, 24 }; int n = arr.Length; Console.WriteLine(countPairs(arr, n)); } } // This code is contributed by manish shaw.
PHP
<?php // PHP Program to count pairs in an array // with some common digit // Returns true if the pair is valid, // otherwise false function checkValidPair($num1, $num2) { // converting integers to strings $s1 = (string)$num1; $s2 = (string)$num2; // Iterate over the strings and check // if a character in first string is also // present in second string, return true for ($i = 0; $i < strlen($s1); $i++) for ($j = 0; $j < strlen($s2); $j++) if ($s1[$i] == $s2[$j]) return true; // No common digit found return false; } // Returns the number of valid pairs function countPairs(&$arr, $n) { $numberOfPairs = 0; // Iterate over all possible pairs for ($i = 0; $i < $n; $i++) for ($j = $i + 1; $j < $n; $j++) if (checkValidPair($arr[$i], $arr[$j])) $numberOfPairs++; return $numberOfPairs; } // Driver Code $arr = array(10, 12, 24 ); $n = sizeof($arr); echo (countPairs($arr, $n)); // This code is contributed // by Shivi_Aggarwal ?>
Javascript
<script> // Javascript Program to count pairs in an array // with some common digit // Returns true if the pair is valid, // otherwise false function checkValidPair(num1, num2) { // converting integers to strings var s1 = num1.toString(); var s2 = num2.toString(); var i,j; // Iterate over the strings and check // if a character in first string is also // present in second string, return true for(i = 0; i < s1.length; i++) for(j = 0; j < s2.length; j++) if (s1[i] == s2[j]) return true; // No common digit found return false; } // Returns the number of valid pairs function countPairs(arr, n) { var numberOfPairs = 0; // Iterate over all possible pairs for(i = 0; i < n; i++) for(j = i + 1; j < n; j++) if(checkValidPair(arr[i], arr[j])) numberOfPairs++; return numberOfPairs; } // Driver Code to test above functions var arr = [10, 12, 24]; var n = arr.length;; document.write(countPairs(arr, n)); </script>
2
Complejidad de tiempo: O(N 2 ) donde N es el tamaño de la array.
Método 2 (Enmascaramiento de bits): un enfoque eficiente para resolver este problema es crear una máscara de bits para cada dígito presente en un número en particular. Así, para que cada dígito esté presente en un número si tenemos una máscara de 1111111111.
Digits - 0 1 2 3 4 5 6 7 8 9 | | | | | | | | | | Mask - 1 1 1 1 1 1 1 1 1 1 Here 1 denotes that the corresponding ith digit is set. For e.g. 1235 can be represented as Digits - 0 1 2 3 4 5 6 7 8 9 | | | | | | | | | | Mask for 1235 - 0 1 1 1 0 1 0 0 0 0
Ahora solo tenemos que extraer cada dígito de un número y establecer el bit correspondiente (1 << i -ésimo dígito) y almacenar el número completo como una máscara. Un análisis cuidadoso sugiere que el valor máximo de la máscara es 1023 en decimal (que contiene todos los dígitos del 0 al 9). Dado que el mismo conjunto de dígitos puede existir en más de un número, necesitamos mantener una array de frecuencias para almacenar el recuento del valor de la máscara.
Deje que las frecuencias de dos máscaras i y j sean freq i y freq j respectivamente,
si (i Y j) devuelven verdadero, significa que la i -ésima y la j -ésima máscara contienen al menos un bit conjunto común que a su vez implica que los números de los que provienen estas máscaras han sido construidos también contienen un dígito común
entonces,
incremente la respuesta
ans += freq i * freq j [ if i != j ]
ans += (freq i * (freq i – 1)) / 2 [ if j == i ]
A continuación se muestra la implementación de este enfoque eficiente:
C++
// CPP Program to count pairs in an array with // some common digit #include <bits/stdc++.h> using namespace std; // This function calculates the mask frequencies // for every present in the array void calculateMaskFrequencies(int arr[], int n, unordered_map<int, int>& freq) { // Iterate over the array for (int i = 0; i < n; i++) { int num = arr[i]; // Creating an empty mask int mask = 0; // Extracting every digit of the number // and updating corresponding bit in the // mask while (num > 0) { mask = mask | (1 << (num % 10)); num /= 10; } // Update the frequency array freq[mask]++; } } // Function return the number of valid pairs int countPairs(int arr[], int n) { // Store the mask frequencies unordered_map<int, int> freq; calculateMaskFrequencies(arr, n, freq); long long int numberOfPairs = 0; // Considering every possible pair of masks // and calculate pairs according to their // frequencies for (int i = 0; i < 1024; i++) { numberOfPairs += (freq[i] * (freq[i] - 1)) / 2; for (int j = i + 1; j < 1024; j++) { // if it contains a common digit if (i & j) numberOfPairs += (freq[i] * freq[j]); } } return numberOfPairs; } // Driver Code to test above functions int main() { int arr[] = { 10, 12, 24 }; int n = sizeof(arr) / sizeof(arr[0]); cout << countPairs(arr, n) << endl; return 0; }
Java
// Java Program to count pairs in an array with // some common digit import java.io.*; import java.util.*; class GFG { // Store the mask frequencies public static Map<Integer, Integer> freq = new HashMap<Integer, Integer>(); // This function calculates the mask frequencies // for every present in the array public static void calculateMaskFrequencies(int[] arr,int n) { // Iterate over the array for(int i = 0; i < n; i++) { int num = arr[i]; // Creating an empty mask int mask = 0; // Extracting every digit of the number // and updating corresponding bit in the // mask while(num > 0) { mask = mask | (1 << (num % 10)); num /= 10; } // Update the frequency array if(freq.containsKey(mask)) { freq.put(new Integer(mask), freq.get(mask) + 1); } else { freq.put(new Integer(mask), 1); } } } // Function return the number of valid pairs public static int countPairs(int[] arr, int n) { calculateMaskFrequencies(arr, n); int numberOfPairs = 0; // Considering every possible pair of masks // and calculate pairs according to their // frequencies for(int i = 0; i < 1024; i++) { int x = 0; if(freq.containsKey(i)) { x = freq.get(i); } numberOfPairs += ((x) * (x - 1)) / 2; for(int j = i + 1; j < 1024; j++) { int y = 0; // if it contains a common digit if((i & j) != 0) { if(freq.containsKey(j)) { y = freq.get(j); } numberOfPairs += x * y; } } } return numberOfPairs; } // Driver Code public static void main (String[] args) { int[] arr = {10, 12, 24}; int n = arr.length; System.out.println(countPairs(arr, n)); } } // This code is contributed by avanitrachhadiya2155
Python3
# Python3 Program to count pairs in an array # with some common digit # This function calculates the mask frequencies # for every present in the array def calculateMaskFrequencies(arr, n, freq): # Iterate over the array for i in range(n): num = arr[i] # Creating an empty mask mask = 0 # Extracting every digit of the number # and updating corresponding bit in the # mask while (num > 0): mask = mask | (1 << (num % 10)) num //= 10 # Update the frequency array freq[mask] = freq.get(mask, 0) + 1 # Function return the number of valid pairs def countPairs(arr, n): # Store the mask frequencies freq = dict() calculateMaskFrequencies(arr, n, freq) numberOfPairs = 0 # Considering every possible pair of masks # and calculate pairs according to their # frequencies for i in range(1024): x = 0 if i in freq.keys(): x = freq[i] numberOfPairs += (x * (x - 1)) // 2 for j in range(i + 1, 1024): y = 0 if j in freq.keys(): y = freq[j] # if it contains a common digit if (i & j): numberOfPairs += (x * y) return numberOfPairs # Driver Code arr = [10, 12, 24] n = len(arr) print(countPairs(arr, n)) # This code is contributed by mohit kumar
C#
// C# Program to count pairs in an array with // some common digit using System; using System.Collections.Generic; public class GFG { // Store the mask frequencies static Dictionary<int, int> freq = new Dictionary<int, int>(); // This function calculates the mask frequencies // for every present in the array public static void calculateMaskFrequencies(int[] arr,int n) { // Iterate over the array for(int i = 0; i < n; i++) { int num = arr[i]; // Creating an empty mask int mask = 0; // Extracting every digit of the number // and updating corresponding bit in the // mask while(num > 0) { mask = mask | (1 << (num % 10)); num /= 10; } // Update the frequency array if(freq.ContainsKey(mask)) { freq[mask]++; } else { freq.Add(mask, 1); } } } public static int countPairs(int[] arr, int n) { calculateMaskFrequencies(arr, n); int numberOfPairs = 0; // Considering every possible pair of masks // and calculate pairs according to their // frequencies for(int i = 0; i < 1024; i++) { int x = 0; if(freq.ContainsKey(i)) { x = freq[i]; } numberOfPairs += ((x) * (x - 1)) / 2; for(int j = i + 1; j < 1024; j++) { int y = 0; // if it contains a common digit if((i & j) != 0) { if(freq.ContainsKey(j)) { y = freq[j]; } numberOfPairs += x * y; } } } return numberOfPairs; } // Driver Code static public void Main () { int[] arr = {10, 12, 24}; int n = arr.Length; Console.WriteLine(countPairs(arr, n)); } } // This code is contributed by rag2127
Javascript
<script> // Javascript Program to count pairs in an array with // some common digit // Store the mask frequencies let freq = new Map(); // This function calculates the mask frequencies // for every present in the array function calculateMaskFrequencies(arr,n) { // Iterate over the array for(let i = 0; i < n; i++) { let num = arr[i]; // Creating an empty mask let mask = 0; // Extracting every digit of the number // and updating corresponding bit in the // mask while(num > 0) { mask = mask | (1 << (num % 10)); num = Math.floor(num/10); } // Update the frequency array if(freq.has(mask)) { freq.set((mask), freq.get(mask) + 1); } else { freq.set((mask), 1); } } } // Function return the number of valid pairs function countPairs(arr,n) { calculateMaskFrequencies(arr, n); let numberOfPairs = 0; // Considering every possible pair of masks // and calculate pairs according to their // frequencies for(let i = 0; i < 1024; i++) { let x = 0; if(freq.has(i)) { x = freq.get(i); } numberOfPairs += Math.floor((x) * (x - 1)) / 2; for(let j = i + 1; j < 1024; j++) { let y = 0; // if it contains a common digit if((i & j) != 0) { if(freq.has(j)) { y = freq.get(j); } numberOfPairs += x * y; } } } return numberOfPairs; } // Driver Code let arr=[10, 12, 24]; let n = arr.length; document.write(countPairs(arr, n)); // This code is contributed by unknown2108 </script>
2
Complejidad de tiempo: O(N + 1024 * 1024), donde N es el tamaño de la array.
Publicación traducida automáticamente
Artículo escrito por Nishant Tanwar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA