Contar pares con Bitwise XOR como número PAR

Dada una array de N enteros, la tarea es encontrar el número de pares (i, j) tales que A[i] ^ A[j] sea par. 
Ejemplos: 
 

Input: A[] =  { 5, 4, 7, 2, 1}
Output: 4
Since pair of A[] =
( 5, 4 ) = 1( 5, 7 ) = 2( 5, 2 ) = 7( 5, 1 ) = 4
( 4, 7 ) = 3( 4, 2 ) = 6( 4, 1 ) = 5
( 7, 2 ) = 5( 7, 1 ) = 6
( 2, 1 ) = 3
Total XOR even pair  = 4

Input: A[] = { 7, 2, 8, 1, 0, 5, 11 }
Output: 9
Since pair of A[] =
( 7, 2 ) = 5( 7, 8 ) = 15( 7, 1 ) = 6( 7, 0 ) = 7( 7, 5 ) = 2( 7, 11 ) = 12
( 2, 8 ) = 10( 2, 1 ) = 3( 2, 0 ) = 2( 2, 5 ) = 7( 2, 11 ) = 9
( 8, 1 ) = 9( 8, 0 ) = 8( 8, 5 ) = 13( 8, 11 ) = 3
( 1, 0 ) = 1( 1, 5 ) = 4( 1, 11 ) = 10
( 0, 5 ) = 5( 0, 11 ) = 11
( 5, 11 ) = 14

Un enfoque ingenuo es verificar cada par e imprimir el conteo de pares que son pares.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to count pairs
// with XOR giving a even number
#include <iostream>
using namespace std;
 
// Function to count number of even pairs
int findevenPair(int A[], int N)
{
    int i, j;
 
    // variable for counting even pairs
    int evenPair = 0;
 
    // find all pairs
    for (i = 0; i < N; i++) {
        for (j = i + 1; j < N; j++) {
 
            // find XOR operation
            // check even or even
            if ((A[i] ^ A[j]) % 2 == 0)
                evenPair++;
        }
    }
 
    // return number of even pair
    return evenPair;
}
 
// Driver Code
int main()
{
 
    int A[] = { 5, 4, 7, 2, 1 };
    int N = sizeof(A) / sizeof(A[0]);
 
    // calling function findevenPair
    // and print number of even pair
    cout << findevenPair(A, N) << endl;
 
    return 0;
}

C

// C program to count pairs
// with XOR giving a even number
#include <stdio.h>
 
// Function to count number of even pairs
int findevenPair(int A[], int N)
{
    int i, j;
 
    // variable for counting even pairs
    int evenPair = 0;
 
    // find all pairs
    for (i = 0; i < N; i++) {
        for (j = i + 1; j < N; j++) {
 
            // find XOR operation
            // check even or even
            if ((A[i] ^ A[j]) % 2 == 0)
                evenPair++;
        }
    }
 
    // return number of even pair
    return evenPair;
}
 
// Driver Code
int main()
{
 
    int A[] = { 5, 4, 7, 2, 1 };
    int N = sizeof(A) / sizeof(A[0]);
 
    // calling function findevenPair
    // and print number of even pair
    printf("%d\n",findevenPair(A, N));
 
    return 0;
}
 
// This code is contributed by kothvvsaakash.

Java

// Java program to count pairs
// with XOR giving a even number
import java.io.*;
 
class GFG
{
 
// Function to count number of even pairs
static int findevenPair(int []A, int N)
{
    int i, j;
 
    // variable for counting even pairs
    int evenPair = 0;
 
    // find all pairs
    for (i = 0; i < N; i++)
    {
        for (j = i + 1; j < N; j++)
        {
 
            // find XOR operation
            // check even or even
            if ((A[i] ^ A[j]) % 2 == 0)
                evenPair++;
        }
    }
 
    // return number of even pair
    return evenPair;
}
 
// Driver Code
public static void main (String[] args)
{
    int A[] = { 5, 4, 7, 2, 1 };
    int N = A.length;
     
    // calling function findevenPair
    // and print number of even pair
    System.out.println(findevenPair(A, N));
}
}
 
// This code is contributed by inder_verma..

Python3

     
# Python3 program to count pairs
# with XOR giving a even number
 
  
# Function to count number of even pairs
def findevenPair(A, N):
 
    # variable for counting even pairs
    evenPair = 0
  
    # find all pairs
    for i in range(0, N):
        for j in range(i+1, N):
             
            # find XOR operation
            # check even or even
            if ((A[i] ^ A[j]) % 2 == 0):
                evenPair+=1
 
    # return number of even pair
    return evenPair;
  
# Driver Code
def main():
    A = [ 5, 4, 7, 2, 1 ]
    N = len(A)
  
    # calling function findevenPair
    # and print number of even pair
    print(findevenPair(A, N))
  
if __name__ == '__main__':
    main()
# This code is contributed by PrinciRaj1992

C#

// C# program to count pairs
// with XOR giving a even number
using System;
 
class GFG
{
 
// Function to count number of
// even pairs
static int findevenPair(int []A, int N)
{
    int i, j;
 
    // variable for counting even pairs
    int evenPair = 0;
 
    // find all pairs
    for (i = 0; i < N; i++)
    {
        for (j = i + 1; j < N; j++)
        {
 
            // find XOR operation
            // check even or even
            if ((A[i] ^ A[j]) % 2 == 0)
                evenPair++;
        }
    }
 
    // return number of even pair
    return evenPair;
}
 
// Driver Code
public static void Main ()
{
    int []A = { 5, 4, 7, 2, 1 };
    int N = A.Length;
     
    // calling function findevenPair
    // and print number of even pair
    Console.WriteLine(findevenPair(A, N));
}
}
 
// This code is contributed
// by inder_verma..

PHP

<?php
// PHP program to count pairs
// with XOR giving a even number
 
// Function to count number
// of even pairs
function findevenPair(&$A, $N)
{
 
    // variable for counting even pairs
    $evenPair = 0;
 
    // find all pairs
    for ($i = 0; $i < $N; $i++)
    {
        for ($j = $i + 1; $j < $N; $j++)
        {
 
            // find XOR operation
            // check even or even
            if (($A[$i] ^ $A[$j]) % 2 == 0)
                $evenPair++;
        }
    }
 
    // return number of even pair
    return $evenPair;
}
 
// Driver Code
$A = array(5, 4, 7, 2, 1 );
$N = sizeof($A);
 
// calling function findevenPair
// and print number of even pair
echo (findevenPair($A, $N));
 
// This code is contributed
// by Shivi_Aggarwal
?>

Javascript

<script>
// Javascript program to count pairs
// with XOR giving a even number
 
// Function to count number of even pairs
function findevenPair(A, N)
{
    let i, j;
 
    // variable for counting even pairs
    let evenPair = 0;
 
    // find all pairs
    for (i = 0; i < N; i++) {
        for (j = i + 1; j < N; j++) {
 
            // find XOR operation
            // check even or even
            if ((A[i] ^ A[j]) % 2 == 0)
                evenPair++;
        }
    }
 
    // return number of even pair
    return evenPair;
}
 
// Driver Code
let A = [ 5, 4, 7, 2, 1 ];
let N = A.length;
 
// calling function findevenPair
// and print number of even pair
document.write(findevenPair(A, N));
 
// This code is contributed by souravmahato348.
</script>
Producción: 

4

 

Complejidad de tiempo: O (n ^ 2)
Una solución eficiente es Contar pares con Bitwise XOR como número impar, es decir , pares pares impares . Luego devuelva pares totales – pares pares impares donde pares totales = (N * (N-1) / 2) y pares pares impares = recuento * (N – recuento) . Como, los pares que darán Even Bitwise XOR son:
 

par, par 
impar, impar

Por lo tanto, encuentre la cantidad de pares con elementos pares e impares y reste del número total. de pares
A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ program to count pairs
// with XOR giving a even number
#include <iostream>
using namespace std;
 
// Function to count number of even pairs
int findEvenPair(int A[], int N)
{
    int count = 0;
 
    // find all pairs
    for (int i = 0; i < N; i++) {
        if (A[i] % 2 != 0)
            count++;
    }
 
    int totalPairs = (N * (N - 1) / 2);
    int oddEvenPairs = count * (N - count);
 
    // return number of even pair
    return totalPairs - oddEvenPairs;
}
 
// Driver Code
int main()
{
    int a[] = { 5, 4, 7, 2, 1 };
    int n = sizeof(a) / sizeof(a[0]);
 
    // calling function findEvenPair
    // and print number of even pair
    cout << findEvenPair(a, n) << endl;
 
    return 0;
}

C

// C program to count pairs
// with XOR giving a even number
#include <stdio.h>
 
// Function to count number of even pairs
int findEvenPair(int A[], int N)
{
    int count = 0;
 
    // find all pairs
    for (int i = 0; i < N; i++) {
        if (A[i] % 2 != 0)
            count++;
    }
 
    int totalPairs = (N * (N - 1) / 2);
    int oddEvenPairs = count * (N - count);
 
    // return number of even pair
    return totalPairs - oddEvenPairs;
}
 
// Driver Code
int main()
{
    int a[] = { 5, 4, 7, 2, 1 };
    int n = sizeof(a) / sizeof(a[0]);
 
    // calling function findEvenPair
    // and print number of even pair
    printf("%d\n",findEvenPair(a, n));
 
    return 0;
}
 
// This code is contributed by kothvvsaakash.

Java

// Java  program to count pairs
// with XOR giving a even number
 
import java.io.*;
 
class GFG {
    // Function to count number of even pairs
static int findEvenPair(int A[], int N)
{
    int count = 0;
 
    // find all pairs
    for (int i = 0; i < N; i++) {
        if (A[i] % 2 != 0)
            count++;
    }
 
    int totalPairs = (N * (N - 1) / 2);
    int oddEvenPairs = count * (N - count);
 
    // return number of even pair
    return totalPairs - oddEvenPairs;
}
 
// Driver Code
     
    public static void main (String[] args) {
     
    int a[] = { 5, 4, 7, 2, 1 };
    int n = a.length;
    // calling function findEvenPair
    // and print number of even pair
    System.out.println(findEvenPair(a, n));
    }
//This code is contributed by akt_mit   
}

Python3

     
# python program to count pairs
# with XOR giving a even number
 
# Function to count number of even pairs
def findEvenPair(A, N):
    count = 0
  
    # find all pairs
    for i in range(0,N):
        if (A[i] % 2 != 0):
            count+=1
  
    totalPairs = (N * (N - 1) / 2)
    oddEvenPairs = count * (N - count)
  
    # return number of even pair
    return (int)(totalPairs - oddEvenPairs)
 
# Driver Code
def main():
    a = [ 5, 4, 7, 2, 1 ]
    n = len(a)
  
    # calling function findEvenPair
    # and print number of even pair
    print(findEvenPair(a, n))
  
if __name__ == '__main__':
    main()
     
# This code is contributed by 29AjayKumar

C#

     
// C# program to count pairs
// with XOR giving a even number
  
using System;
  
public class GFG {
    // Function to count number of even pairs
    static int findEvenPair(int []A, int N)
    {
        int count = 0;
 
        // find all pairs
        for (int i = 0; i < N; i++) {
            if (A[i] % 2 != 0)
                count++;
        }
 
        int totalPairs = (N * (N - 1) / 2);
        int oddEvenPairs = count * (N - count);
 
        // return number of even pair
        return totalPairs - oddEvenPairs;
    }
 
    // Driver Code
      
    public static void Main() {
      
    int []a = { 5, 4, 7, 2, 1 };
    int n = a.Length;
    // calling function findEvenPair
    // and print number of even pair
    Console.Write(findEvenPair(a, n));
    }
}
 
// This code is contributed by 29AjayKumar

PHP

<?php
// PHP program to count pairs
// with XOR giving a even number
 
// Function to count number of even pairs
function findEvenPair($A, $N)
{
    $count = 0;
 
    // find all pairs
    for ($i = 0; $i < $N; $i++)
    {
        if ($A[$i] % 2 != 0)
            $count++;
    }
 
    $totalPairs = ($N * ($N - 1) / 2);
    $oddEvenPairs = $count * ($N - $count);
 
    // return number of even pair
    return $totalPairs - $oddEvenPairs;
}
 
// Driver Code
$a = array(5, 4, 7, 2, 1);
$n = sizeof($a);
 
// calling function findEvenPair
// and print number of even pair
echo findEvenPair($a, $n) . "\n";
 
// This code is contributed
// by Akanksha Rai
?>

Javascript

<script>
 
// Javascript program to count pairs
// with XOR giving a even number
 
// Function to count number of even pairs
function findEvenPair(A, N)
{
    let count = 0;
 
    // find all pairs
    for (let i = 0; i < N; i++) {
        if (A[i] % 2 != 0)
            count++;
    }
 
    let totalPairs = parseInt(N * (N - 1) / 2);
    let oddEvenPairs = count * (N - count);
 
    // return number of even pair
    return totalPairs - oddEvenPairs;
}
 
// Driver Code
    let a = [ 5, 4, 7, 2, 1 ];
    let n = a.length;
 
    // calling function findEvenPair
    // and print number of even pair
    document.write(findEvenPair(a, n));
     
</script>
Producción: 

4

 

Complejidad de tiempo : O(n)
 

Publicación traducida automáticamente

Artículo escrito por VishalBachchas y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *