Dadas dos arrays A[] y B[] de N elementos cada una. La tarea es encontrar el número de pares de índices (i, j) tales que i ≤ j y F(A[i] | A[j]) = B[j] donde F(X) es el conteo de bits establecidos en la representación binaria de X .
Ejemplos
Entrada: A[] = {5, 3, 2, 4, 6, 1}, B[] = {2, 2, 1, 4, 2, 3}
Salida: 7
Todos los pares posibles son (5, 5), (3, 3), (2, 2),
(2, 6), (4, 6), (6, 6) y (6, 1).
Entrada: A[] = {4, 3, 5, 6, 7}, B[] = {1, 3, 2, 4, 5}
Salida: 4
Enfoque: iterar a través de todos los pares posibles (i, j) y verificar el recuento de bits establecidos en su valor OR. Si el conteo es igual a B[j] entonces incremente el conteo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count of pairs // which satisfy the given condition int solve(int A[], int B[], int n) { int cnt = 0; for (int i = 0; i < n; i++) for (int j = i; j < n; j++) // Check if the count of set bits // in the OR value is B[j] if (__builtin_popcount(A[i] | A[j]) == B[j]) { cnt++; } return cnt; } // Driver code int main() { int A[] = { 5, 3, 2, 4, 6, 1 }; int B[] = { 2, 2, 1, 4, 2, 3 }; int size = sizeof(A) / sizeof(A[0]); cout << solve(A, B, size); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the count of pairs // which satisfy the given condition static int solve(int A[], int B[], int n) { int cnt = 0; for (int i = 0; i < n; i++) for (int j = i; j < n; j++) // Check if the count of set bits // in the OR value is B[j] if (Integer.bitCount(A[i] | A[j]) == B[j]) { cnt++; } return cnt; } // Driver code public static void main(String args[]) { int A[] = { 5, 3, 2, 4, 6, 1 }; int B[] = { 2, 2, 1, 4, 2, 3 }; int size = A.length; System.out.println(solve(A, B, size)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 implementation of the approach # Function to return the count of pairs # which satisfy the given condition def solve(A, B, n) : cnt = 0; for i in range(n) : for j in range(i, n) : # Check if the count of set bits # in the OR value is B[j] if (bin(A[i] | A[j]).count('1') == B[j]) : cnt += 1; return cnt # Driver code if __name__ == "__main__" : A = [ 5, 3, 2, 4, 6, 1 ]; B = [ 2, 2, 1, 4, 2, 3 ]; size = len(A); print(solve(A, B, size)); # This code is contributed by AnkitRai01
C#
// C# implementation of the approach using System; class GFG { // Function to return the count of pairs // which satisfy the given condition static int solve(int []A, int []B, int n) { int cnt = 0; for (int i = 0; i < n; i++) for (int j = i; j < n; j++) // Check if the count of set bits // in the OR value is B[j] if (bitCount(A[i] | A[j]) == B[j]) { cnt++; } return cnt; } static int bitCount(long x) { // To store the count // of set bits int setBits = 0; while (x != 0) { x = x & (x - 1); setBits++; } return setBits; } // Driver code public static void Main(String []args) { int []A = { 5, 3, 2, 4, 6, 1 }; int []B = { 2, 2, 1, 4, 2, 3 }; int size = A.Length; Console.WriteLine(solve(A, B, size)); } } /* This code is contributed by PrinciRaj1992 */
Javascript
<script> // JavaScript implementation of the approach // Function to return the count of pairs // which satisfy the given condition function solve(A,B,n) { let cnt = 0; for (let i = 0; i < n; i++) for (let j = i; j < n; j++) // Check if the count of set bits // in the OR value is B[j] if (bitCount(A[i] | A[j]) == B[j]) { cnt++; } return cnt; } function bitCount(x) { // To store the count // of set bits let setBits = 0; while (x != 0) { x = x & (x - 1); setBits++; } return setBits; } // Driver code let A=[5, 3, 2, 4, 6, 1 ]; let B=[2, 2, 1, 4, 2, 3 ]; let size = A.length; document.write(solve(A, B, size)); // This code is contributed by rag2127 </script>
7
Complejidad del tiempo: O(N 2 )
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por 29AjayKumar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA