Dadas dos arrays A[] y B[] de N elementos cada una. La tarea es encontrar el número de pares de índices (i, j) tales que i ≤ j y F(A[i] & A[j]) = B[j] donde F(X) es el conteo de bits establecidos en la representación binaria de X .
Ejemplos:
Entrada: A[] = {2, 3, 1, 4, 5}, B[] = {2, 2, 1, 4, 2}
Salida: 4
Todos los pares posibles son (3, 3), (3, 1 ), (1, 1) y (5, 5)
Entrada: A[] = {1, 2, 3, 4, 5}, B[] = {2, 2, 2, 2, 2}
Salida: 2
Enfoque: iterar a través de todos los pares posibles (i, j) y verificar el recuento de bits establecidos en su valor AND. Si el conteo es igual a B[j] entonces incremente el conteo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count of pairs // which satisfy the given condition int solve(int A[], int B[], int n) { int cnt = 0; for (int i = 0; i < n; i++) for (int j = i; j < n; j++) // Check if the count of set bits // in the AND value is B[j] if (__builtin_popcount(A[i] & A[j]) == B[j]) { cnt++; } return cnt; } // Driver code int main() { int A[] = { 2, 3, 1, 4, 5 }; int B[] = { 2, 2, 1, 4, 2 }; int size = sizeof(A) / sizeof(A[0]); cout << solve(A, B, size); return 0; }
Java
// Java implementation of the approach public class GFG { // Function to return the count of pairs // which satisfy the given condition static int solve(int A[], int B[], int n) { int cnt = 0; for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) // Check if the count of set bits // in the AND value is B[j] { if (Integer.bitCount(A[i] & A[j]) == B[j]) { cnt++; } } } return cnt; } // Driver code public static void main(String[] args) { int A[] = {2, 3, 1, 4, 5}; int B[] = {2, 2, 1, 4, 2}; int size = A.length; System.out.println(solve(A, B, size)); } } /* This code contributed by PrinciRaj1992 */
Python3
# Python3 implementation of the approach # Function to return the count of pairs # which satisfy the given condition def solve(A, B, n) : cnt = 0; for i in range(n) : for j in range(i, n) : # Check if the count of set bits # in the AND value is B[j] c = A[i] & A[j] if (bin(c).count('1') == B[j]) : cnt += 1; return cnt; # Driver code if __name__ == "__main__" : A = [ 2, 3, 1, 4, 5 ]; B = [ 2, 2, 1, 4, 2 ]; size = len(A); print(solve(A, B, size)); # This code is contributed # by AnkitRai01
C#
// C# Implementation of the above approach using System; class GFG { // Function to return the count of pairs // which satisfy the given condition static int solve(int []A, int []B, int n) { int cnt = 0; for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) // Check if the count of set bits // in the AND value is B[j] { if (countSetBits(A[i] & A[j]) == B[j]) { cnt++; } } } return cnt; } // Function to get no of set // bits in binary representation // of positive integer n static int countSetBits(int n) { int count = 0; while (n > 0) { count += n & 1; n >>= 1; } return count; } // Driver code public static void Main(String[] args) { int []A = {2, 3, 1, 4, 5}; int []B = {2, 2, 1, 4, 2}; int size = A.Length; Console.WriteLine(solve(A, B, size)); } } // This code is contributed by Princi Singh
Javascript
<script> // Javascript Implementation of the above approach // Function to return the count of pairs // which satisfy the given condition function solve(A, B, n) { var cnt = 0; for (var i = 0; i < n; i++) { for (var j = i; j < n; j++) // Check if the count of set bits // in the AND value is B[j] { if (countSetBits(A[i] & A[j]) == B[j]) { cnt++; } } } return cnt; } // Function to get no of set // bits in binary representation // of positive integer n function countSetBits(n) { var count = 0; while (n > 0) { count += n & 1; n >>= 1; } return count; } // Driver code var A = [2, 3, 1, 4, 5]; var B = [2, 2, 1, 4, 2]; var size = A.length; document.write(solve(A, B, size)); // This code is contributed by rutvik_56. </script>
Producción:
4
Complejidad temporal: O(n 2 )
Espacio Auxiliar: O(1)