Dada una array no ordenada arr[] de n enteros y un entero k , la tarea es encontrar el k-ésimo elemento más grande en el rango de índice dado [l, r]
Ejemplos:
Entrada: arr[] = {5, 3, 2, 4, 1}, k = 4, l = 1, r = 5
Salida: 4
4 será el cuarto elemento cuando se ordene arr[0…4].
Entrada: arr[] = {1, 4, 2, 3, 5, 7, 6}, k = 3, l = 3, r = 6
Salida: 5
Enfoque: una solución ingenua será ordenar los elementos en el rango y obtener el k-ésimo elemento más grande, la complejidad de tiempo de esa solución será nlog(n) para cada consulta. Podemos resolver cada consulta en log(n) usando una array de prefijos y una búsqueda binaria. Todo lo que tenemos que hacer es mantener una array de prefijos 2d en la que la i-ésima fila contendrá un número de elementos menor que igual a i en el mismo rango que en la array dada. Después de que la array de prefijos esté lista, todo lo que tenemos que hacer es una simple búsqueda binaria sobre la array de prefijos. Por lo tanto, la complejidad del tiempo se reduce drásticamente.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define MAX 1001 static int prefix[MAX][MAX]; int ar[MAX]; // Function to calculate the prefix void cal_prefix(int n, int arr[]) { int i, j; // Creating one based indexing for (i = 0; i < n; i++) ar[i + 1] = arr[i]; // Initializing and creating prefix array for (i = 1; i <= 1000; i++) { for (j = 0; j <= n; j++) prefix[i][j] = 0; for (j = 1; j <= n; j++) { // Creating a prefix array for every // possible value in a given range prefix[i][j] = prefix[i][j - 1] + (int)(ar[j] <= i ? 1 : 0); } } } // Function to return the kth largest element // in the index range [l, r] int ksub(int l, int r, int n, int k) { int lo, hi, mid; lo = 1; hi = 1000; // Binary searching through the 2d array // and only checking the range in which // the sub array is a part while (lo + 1 < hi) { mid = (lo + hi) / 2; if (prefix[mid][r] - prefix[mid][l - 1] >= k) hi = mid; else lo = mid + 1; } if (prefix[lo][r] - prefix[lo][l - 1] >= k) hi = lo; return hi; } // Driver code int main() { int arr[] = { 1, 4, 2, 3, 5, 7, 6 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 4; // Creating the prefix array // for the given array cal_prefix(n, arr); // Queries int queries[][3] = { { 1, n, 1 }, { 2, n - 2, 2 }, { 3, n - 1, 3 } }; int q = sizeof(queries) / sizeof(queries[0]); // Perform queries for (int i = 0; i < q; i++) cout << ksub(queries[i][0], queries[i][1], n, queries[i][2]) << endl; return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { static int MAX = 1001; static int prefix[][] = new int[MAX][MAX]; static int ar[] = new int[MAX]; // Function to calculate the prefix static void cal_prefix(int n, int arr[]) { int i, j; // Creating one based indexing for (i = 0; i < n; i++) ar[i + 1] = arr[i]; // Initializing and creating prefix array for (i = 1; i <= 1000; i++) { for (j = 0; j <= n; j++) prefix[i][j] = 0; for (j = 1; j <= n; j++) { // Creating a prefix array for every // possible value in a given range prefix[i][j] = prefix[i][j - 1] + (int)(ar[j] <= i ? 1 : 0); } } } // Function to return the kth largest element // in the index range [l, r] static int ksub(int l, int r, int n, int k) { int lo, hi, mid; lo = 1; hi = 1000; // Binary searching through the 2d array // and only checking the range in which // the sub array is a part while (lo + 1 < hi) { mid = (lo + hi) / 2; if (prefix[mid][r] - prefix[mid][l - 1] >= k) hi = mid; else lo = mid + 1; } if (prefix[lo][r] - prefix[lo][l - 1] >= k) hi = lo; return hi; } // Driver code public static void main(String args[]) { int arr[] = { 1, 4, 2, 3, 5, 7, 6 }; int n = arr.length; int k = 4; // Creating the prefix array // for the given array cal_prefix(n, arr); // Queries int queries[][] = { { 1, n, 1 }, { 2, n - 2, 2 }, { 3, n - 1, 3 } }; int q = queries.length; // Perform queries for (int i = 0; i < q; i++) System.out.println( ksub(queries[i][0], queries[i][1], n, queries[i][2])); } } // This code is contributed by Arnab Kundu
Python3
# Python3 implementation of the approach MAX = 1001 prefix = [[0 for i in range(MAX)] for j in range(MAX)] ar = [0 for i in range(MAX)] # Function to calculate the prefix def cal_prefix(n, arr): # Creating one based indexing for i in range(n): ar[i + 1] = arr[i] # Initializing and creating prefix array for i in range(1, 1001, 1): for j in range(n + 1): prefix[i][j] = 0 for j in range(1, n + 1): # Creating a prefix array for every # possible value in a given range if ar[j] <= i: k = 1 else: k = 0 prefix[i][j] = prefix[i][j - 1] + k # Function to return the kth largest element # in the index range [l, r] def ksub(l, r, n, k): lo = 1 hi = 1000 # Binary searching through the 2d array # and only checking the range in which # the sub array is a part while (lo + 1 < hi): mid = int((lo + hi) / 2) if (prefix[mid][r] - prefix[mid][l - 1] >= k): hi = mid else: lo = mid + 1 if (prefix[lo][r] - prefix[lo][l - 1] >= k): hi = lo return hi # Driver code if __name__ == '__main__': arr = [1, 4, 2, 3, 5, 7, 6] n = len(arr) k = 4 # Creating the prefix array # for the given array cal_prefix(n, arr) # Queries queries = [[1, n, 1], [2, n - 2, 2], [3, n - 1, 3]] q = len(queries) # Perform queries for i in range(q): print(ksub(queries[i][0], queries[i][1], n, queries[i][2])) # This code is contributed by # Surendra_Gangwar
C#
// C# implementation of the approach using System; class GFG { static int MAX = 1001; static int[,] prefix = new int[MAX,MAX]; static int[] ar = new int[MAX]; // Function to calculate the prefix static void cal_prefix(int n, int[] arr) { int i, j; // Creating one based indexing for (i = 0; i < n; i++) ar[i + 1] = arr[i]; // Initializing and creating prefix array for (i = 1; i <= 1000; i++) { for (j = 0; j <= n; j++) prefix[i, j] = 0; for (j = 1; j <= n; j++) { // Creating a prefix array for every // possible value in a given range prefix[i, j] = prefix[i, j - 1] + (int)(ar[j] <= i ? 1 : 0); } } } // Function to return the kth largest element // in the index range [l, r] static int ksub(int l, int r, int n, int k) { int lo, hi, mid; lo = 1; hi = 1000; // Binary searching through the 2d array // and only checking the range in which // the sub array is a part while (lo + 1 < hi) { mid = (lo + hi) / 2; if (prefix[mid, r] - prefix[mid, l - 1] >= k) hi = mid; else lo = mid + 1; } if (prefix[lo, r] - prefix[lo, l - 1] >= k) hi = lo; return hi; } // Driver code static void Main() { int []arr = { 1, 4, 2, 3, 5, 7, 6 }; int n = arr.Length; //int k = 4; // Creating the prefix array // for the given array cal_prefix(n, arr); // Queries int [,]queries = { { 1, n, 1 }, { 2, n - 2, 2 }, { 3, n - 1, 3 } }; int q = queries.Length/queries.Rank-1; // Perform queries for (int i = 0; i < q; i++) Console.WriteLine( ksub(queries[i,0], queries[i,1], n, queries[i, 2])); } } // This code is contributed by mits
PHP
<?php // PHP implementation of the approach $MAX = 101; $prefix = array_fill(0, $MAX, array_fill(0, $MAX, 0)); $ar = array_fill(0, $MAX, 0); // Function to calculate the prefix function cal_prefix($n, $arr) { global $prefix,$ar,$MAX; // Creating one based indexing for ($i = 0; $i < $n; $i++) $ar[$i + 1] = $arr[$i]; // Initializing and creating prefix array for ($i = 1; $i <$MAX; $i++) { for ($j = 0; $j <= $n; $j++) $prefix[$i][$j] = 0; for ($j = 1; $j <= $n; $j++) { // Creating a prefix array for every // possible value in a given range $prefix[$i][$j] = $prefix[$i][$j - 1] + (int)($ar[$j] <= $i ? 1 : 0); } } } // Function to return the kth largest element // in the index range [l, r] function ksub($l, $r, $n, $k) { global $prefix, $ar, $MAX; $lo = 1; $hi = $MAX-1; // Binary searching through the 2d array // and only checking the range in which // the sub array is a part while ($lo + 1 < $hi) { $mid = (int)(($lo + $hi) / 2); if ($prefix[$mid][$r] - $prefix[$mid][$l - 1] >= $k) $hi = $mid; else $lo = $mid + 1; } if ($prefix[$lo][$r] - $prefix[$lo][$l - 1] >= $k) $hi = $lo; return $hi; } // Driver code $arr = array( 1, 4, 2, 3, 5, 7, 6 ); $n = count($arr); $k = 4; // Creating the prefix array // for the given array cal_prefix($n, $arr); // Queries $queries = array(array( 1, $n, 1 ), array( 2, $n - 2, 2 ), array( 3, $n - 1, 3 )); $q = count($queries); // Perform queries for ($i = 0; $i < $q; $i++) echo ksub($queries[$i][0], $queries[$i][1],$n, $queries[$i][2])."\n"; // This code is contributed by mits ?>
Javascript
<script> // Javascript implementation of the approach let MAX = 101; let prefix = new Array(MAX); for (let i = 0; i < MAX; i++) { prefix[i] = new Array(MAX).fill(0) } let ar = new Array(MAX).fill(0); // Function to calculate the prefix function cal_prefix(n, arr) { // Creating one based indexing for (let i = 0; i < n; i++) ar[i + 1] = arr[i]; // Initializing and creating prefix array for (let i = 1; i < MAX; i++) { for (let j = 0; j <= n; j++) prefix[i][j] = 0; for (let j = 1; j <= n; j++) { // Creating a prefix array for every // possible value in a given range prefix[i][j] = prefix[i][j - 1] + (ar[j] <= i ? 1 : 0); } } } // Function to return the kth largest element // in the index range [l, r] function ksub(l, r, n, k) { let lo = 1; let hi = MAX - 1; // Binary searching through the 2d array // and only checking the range in which // the sub array is a part while (lo + 1 < hi) { let mid = Math.floor((lo + hi) / 2); if (prefix[mid][r] - prefix[mid][l - 1] >= k) hi = mid; else lo = mid + 1; } if (prefix[lo][r] - prefix[lo][l - 1] >= k) hi = lo; return hi; } // Driver code let arr = new Array(1, 4, 2, 3, 5, 7, 6); let n = arr.length; let k = 4; // Creating the prefix array // for the given array cal_prefix(n, arr); // Queries let queries = new Array(new Array(1, n, 1), new Array(2, n - 2, 2), new Array(3, n - 1, 3)); let q = queries.length; // Perform queries for (let i = 0; i < q; i++) document.write(ksub(queries[i][0], queries[i][1], n, queries[i][2]) + "<br>"); // This code is contributed by _saurabh_jaiswal </script>
1 3 5
Complejidad de tiempo: O(n + q*log(MAX)), donde n es el tamaño de la array, q es la cantidad de consultas y MAX es la cantidad de filas o columnas de la array de prefijos 2D.
Complejidad espacial: O(MAX*MAX), para almacenar elementos en la array de prefijos.
Publicación traducida automáticamente
Artículo escrito por Rafiu Jaman Mollah y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA