Dadas dos arrays desordenadas de elementos distintos, la tarea es encontrar todos los pares de ambas arrays cuya suma sea igual a X .
Ejemplos:
C++
// C++ program to find all pairs in both arrays // whose sum is equal to given value x #include <bits/stdc++.h> using namespace std; // Function to print all pairs in both arrays // whose sum is equal to given value x void findPairs(int arr1[], int arr2[], int n, int m, int x) { for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (arr1[i] + arr2[j] == x) cout << arr1[i] << " " << arr2[j] << endl; } // Driver code int main() { int arr1[] = { 1, 2, 3, 7, 5, 4 }; int arr2[] = { 0, 7, 4, 3, 2, 1 }; int n = sizeof(arr1) / sizeof(int); int m = sizeof(arr2) / sizeof(int); int x = 8; findPairs(arr1, arr2, n, m, x); return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
C
// C program to find all pairs in both arrays // whose sum is equal to given value x #include <stdio.h> // Function to print all pairs in both arrays // whose sum is equal to given value x void findPairs(int arr1[], int arr2[], int n, int m, int x) { for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (arr1[i] + arr2[j] == x) printf("%d %d\n", arr1[i], arr2[j]); } // Driver code int main() { int arr1[] = { 1, 2, 3, 7, 5, 4 }; int arr2[] = { 0, 7, 4, 3, 2, 1 }; int n = sizeof(arr1) / sizeof(int); int m = sizeof(arr2) / sizeof(int); int x = 8; findPairs(arr1, arr2, n, m, x); return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
Java
// Java program to find all pairs in both arrays // whose sum is equal to given value x import java.io.*; class GFG { // Function to print all pairs in both arrays // whose sum is equal to given value x static void findPairs(int arr1[], int arr2[], int n, int m, int x) { for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (arr1[i] + arr2[j] == x) System.out.println(arr1[i] + " " + arr2[j]); } // Driver code public static void main(String[] args) { int arr1[] = { 1, 2, 3, 7, 5, 4 }; int arr2[] = { 0, 7, 4, 3, 2, 1 }; int x = 8; findPairs(arr1, arr2, arr1.length, arr2.length, x); } } // This code is contributed // by sunnysingh
Python3
# Python 3 program to find all # pairs in both arrays whose # sum is equal to given value x # Function to print all pairs # in both arrays whose sum is # equal to given value x def findPairs(arr1, arr2, n, m, x): for i in range(0, n): for j in range(0, m): if (arr1[i] + arr2[j] == x): print(arr1[i], arr2[j]) # Driver code arr1 = [1, 2, 3, 7, 5, 4] arr2 = [0, 7, 4, 3, 2, 1] n = len(arr1) m = len(arr2) x = 8 findPairs(arr1, arr2, n, m, x) # This code is contributed by Smitha Dinesh Semwal
C#
// C# program to find all // pairs in both arrays // whose sum is equal to // given value x using System; class GFG { // Function to print all // pairs in both arrays // whose sum is equal to // given value x static void findPairs(int[] arr1, int[] arr2, int n, int m, int x) { for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (arr1[i] + arr2[j] == x) Console.WriteLine(arr1[i] + " " + arr2[j]); } // Driver code static void Main() { int[] arr1 = { 1, 2, 3, 7, 5, 4 }; int[] arr2 = { 0, 7, 4, 3, 2, 1 }; int x = 8; findPairs(arr1, arr2, arr1.Length, arr2.Length, x); } } // This code is contributed // by Sam007
PHP
<?php // PHP program to find all pairs // in both arrays whose sum is // equal to given value x // Function to print all pairs // in both arrays whose sum is // equal to given value x function findPairs($arr1, $arr2, $n, $m, $x) { for ($i = 0; $i < $n; $i++) for ($j = 0; $j < $m; $j++) if ($arr1[$i] + $arr2[$j] == $x) echo $arr1[$i] . " " . $arr2[$j] . "\n"; } // Driver code $arr1 = array(1, 2, 3, 7, 5, 4); $arr2 = array(0, 7, 4, 3, 2, 1); $n = count($arr1); $m = count($arr2); $x = 8; findPairs($arr1, $arr2, $n, $m, $x); // This code is contributed // by Sam007 ?>
Javascript
<script> // Javascript program to find all pairs in both arrays // whose sum is equal to given value x // Function to print all pairs in both arrays // whose sum is equal to given value x function findPairs(arr1, arr2, n, m, x) { for (let i = 0; i < n; i++) for (let j = 0; j < m; j++) if (arr1[i] + arr2[j] == x) document.write(arr1[i] + " " + arr2[j] + "<br>"); } // Driver code let arr1 = [ 1, 2, 3, 7, 5, 4 ]; let arr2 = [ 0, 7, 4, 3, 2, 1 ]; let n = arr1.length; let m = arr2.length; let x = 8; findPairs(arr1, arr2, n, m, x); // This code is contributed by Surbhi Tyagi. </script>
C++
#include<bits/stdc++.h> using namespace std; void heapify(int a[] , int n , int i) { int rootLargest = i; int lchild = 2 * i; int rchild = (2 * i) + 1; if (lchild < n && a[lchild] > a[rootLargest]) rootLargest = lchild; if (rchild < n && a[rchild] > a[rootLargest]) rootLargest = rchild; if (rootLargest != i) { swap(a[i] , a[rootLargest]); heapify(a , n , rootLargest); } } int binarySearch(int a[] , int l , int r , int x) { while (l <= r) { int m = l + (r - l) / 2; if (a[m] == x) return m; if (a[m] < x) l = m + 1; else r = m - 1; } return -1; } int main() { int A[] = {1,2,1,3,4}; int B[] = {3,1,5,1,2}; int K = 8; int n = sizeof(A) / sizeof(A[0]); // Building the heap for (int i = n / 2 - 1 ; i >= 1; i--) heapify(A , n , i); for(int i=0 ; i<n ; i++) //O(n) { int temp = K - B[i]; //O(1) if(binarySearch(A , 0 , n-1 , temp)) //O(logn) { cout<<"\nFound the elements.\n"; break; } } return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
C
#include <stdio.h> #include <stdlib.h> void heapify(int a[], int n, int i) { int rootLargest = i; int lchild = 2 * i; int rchild = (2 * i) + 1; if (lchild < n && a[lchild] > a[rootLargest]) rootLargest = lchild; if (rchild < n && a[rchild] > a[rootLargest]) rootLargest = rchild; if (rootLargest != i) { int temp = a[i]; a[i] = a[rootLargest]; a[rootLargest] = temp; heapify(a, n, rootLargest); } } int binarySearch(int a[], int l, int r, int x) { while (l <= r) { int m = l + (r - l) / 2; if (a[m] == x) return m; if (a[m] < x) l = m + 1; else r = m - 1; } return -1; } int main() { int A[] = { 1, 2, 1, 3, 4 }; int B[] = { 3, 1, 5, 1, 2 }; int K = 8; int n = sizeof(A) / sizeof(A[0]); // Building the heap for (int i = n / 2 - 1; i >= 1; i--) heapify(A, n, i); for (int i = 0; i < n; i++) // O(n) { int temp = K - B[i]; // O(1) if (binarySearch(A, 0, n - 1, temp)) // O(logn) { printf("\nFound the elements.\n"); break; } } return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
Java
import java.util.*; class GFG{ static int A[] = {1,2,1,3,4}; static void heapify( int n , int i) { int rootLargest = i; int lchild = 2 * i; int rchild = (2 * i) + 1; if (lchild < n && A[lchild] > A[rootLargest]) rootLargest = lchild; if (rchild < n && A[rchild] > A[rootLargest]) rootLargest = rchild; if (rootLargest != i) { int t = A[i]; A[i] = A[rootLargest]; A[rootLargest] = t; //Recursion heapify( n , rootLargest); } } static int binarySearch( int l , int r , int x) { while (l <= r) { int m = l + (r - l) / 2; if (A[m] == x) return m; if (A[m] < x) l = m + 1; else r = m - 1; } return -1; } public static void main(String[] args) { int B[] = {3,1,5,1,2}; int K = 8; int n = A.length; // Building the heap for (int i = n / 2 - 1 ; i >= 1; i--) heapify( n , i); for(int i = 0; i < n; i++) //O(n) { int temp = K - B[i]; //O(1) if(binarySearch(0, n - 1, temp - 1) != -1) //O(logn) { System.out.print("\nFound the elements.\n"); break; } } } } // This code is contributed by Rajput-Ji
Python3
A = [ 1, 2, 1, 3, 4 ]; def heapify(n, i): rootLargest = i; lchild = 2 * i; rchild = (2 * i) + 1; if (lchild < n and A[lchild] > A[rootLargest]): rootLargest = lchild; if (rchild < n and A[rchild] > A[rootLargest]): rootLargest = rchild; if (rootLargest != i): t = A[i]; A[i] = A[rootLargest]; A[rootLargest] = t; # Recursion heapify(n, rootLargest); def binarySearch(l, r, x): while (l <= r): m = l + (r - l) // 2; if (A[m] == x): return m; if (A[m] < x): l = m + 1; else: r = m - 1; return -1; if __name__ == '__main__': B = [ 3, 1, 5, 1, 2 ]; K = 8; n = len(A); # Building the heap for i in range(n// 2 - 1,0, -1): heapify(n, i); for i in range(n): temp = K - B[i]; if (binarySearch(0, n - 1, temp - 1) != -1): print("\nFound the elements."); break; # This code is contributed by Rajput-Ji
C#
using System; public class GFG { static int []A = { 1, 2, 1, 3, 4 }; static void heapify(int n, int i) { int rootLargest = i; int lchild = 2 * i; int rchild = (2 * i) + 1; if (lchild < n && A[lchild] > A[rootLargest]) rootLargest = lchild; if (rchild < n && A[rchild] > A[rootLargest]) rootLargest = rchild; if (rootLargest != i) { int t = A[i]; A[i] = A[rootLargest]; A[rootLargest] = t; // Recursion heapify(n, rootLargest); } } static int binarySearch(int l, int r, int x) { while (l <= r) { int m = l + (r - l) / 2; if (A[m] == x) return m; if (A[m] < x) l = m + 1; else r = m - 1; } return -1; } public static void Main(String[] args) { int []B = { 3, 1, 5, 1, 2 }; int K = 8; int n = A.Length; // Building the heap for (int i = n / 2 - 1; i >= 1; i--) heapify(n, i); for (int i = 0; i < n; i++) // O(n) { int temp = K - B[i]; // O(1) if (binarySearch(0, n - 1, temp - 1) != -1) // O(logn) { Console.Write("\nFound the elements.\n"); break; } } } } // This code is contributed by Rajput-Ji
Javascript
<script> function heapify(a,n,i) { let rootLargest = i; let lchild = 2 * i; let rchild = (2 * i) + 1; if (lchild < n && a[lchild] > a[rootLargest]) rootLargest = lchild; if (rchild < n && a[rchild] > a[rootLargest]) rootLargest = rchild; if (rootLargest != i) { swap(a[i] , a[rootLargest]); //Recursion heapify(a , n , rootLargest); } } function binarySearch(a,l,r,x) { while (l <= r) { let m = l + (r - l) / 2; if (a[m] == x) return m; if (a[m] < x) l = m + 1; else r = m - 1; } return -1; } let A = [1,2,1,3,4]; let B = [3,1,5,1,2]; let K = 8; let n = A.length; // Building the heap for (let i = n / 2 - 1 ; i >= 1; i--) heapify(A , n , i); for(let i=0 ; i<n ; i++) //O(n) { let temp = K - B[i]; //O(1) if(binarySearch(A , 0 , n-1 , temp)) //O(logn) { document.write("\nFound the elements.\n"); break; } } </script>
C++
// C++ program to find all pair in both arrays // whose sum is equal to given value x #include <bits/stdc++.h> using namespace std; // Function to find all pairs in both arrays // whose sum is equal to given value x void findPairs(int arr1[], int arr2[], int n, int m, int x) { // Insert all elements of first array in a hash unordered_set<int> s; for (int i = 0; i < n; i++) s.insert(arr1[i]); // Subtract sum from second array elements one // by one and check it's present in array first // or not for (int j = 0; j < m; j++) if (s.find(x - arr2[j]) != s.end()) cout << x - arr2[j] << " " << arr2[j] << endl; } // Driver code int main() { int arr1[] = { 1, 0, -4, 7, 6, 4 }; int arr2[] = { 0, 2, 4, -3, 2, 1 }; int x = 8; int n = sizeof(arr1) / sizeof(int); int m = sizeof(arr2) / sizeof(int); findPairs(arr1, arr2, n, m, x); return 0; }
Java
// JAVA Code for Given two unsorted arrays, // find all pairs whose sum is x import java.util.*; class GFG { // Function to find all pairs in both arrays // whose sum is equal to given value x public static void findPairs(int arr1[], int arr2[], int n, int m, int x) { // Insert all elements of first array in a hash HashMap<Integer, Integer> s = new HashMap<Integer, Integer>(); for (int i = 0; i < n; i++) s.put(arr1[i], 0); // Subtract sum from second array elements one // by one and check it's present in array first // or not for (int j = 0; j < m; j++) if (s.containsKey(x - arr2[j])) System.out.println(x - arr2[j] + " " + arr2[j]); } /* Driver program to test above function */ public static void main(String[] args) { int arr1[] = { 1, 0, -4, 7, 6, 4 }; int arr2[] = { 0, 2, 4, -3, 2, 1 }; int x = 8; findPairs(arr1, arr2, arr1.length, arr2.length, x); } } // This code is contributed by Arnav Kr. Mandal.
Python3
# Python3 program to find all # pair in both arrays whose # sum is equal to given value x # Function to find all pairs # in both arrays whose sum is # equal to given value x def findPairs(arr1, arr2, n, m, x): # Insert all elements of # first array in a hash s = set() for i in range (0, n): s.add(arr1[i]) # Subtract sum from second # array elements one by one # and check it's present in # array first or not for j in range(0, m): if ((x - arr2[j]) in s): print((x - arr2[j]), '', arr2[j]) # Driver code arr1 = [1, 0, -4, 7, 6, 4] arr2 = [0, 2, 4, -3, 2, 1] x = 8 n = len(arr1) m = len(arr2) findPairs(arr1, arr2, n, m, x) # This code is contributed # by ihritik
C#
// C# Code for Given two unsorted arrays, // find all pairs whose sum is x using System; using System.Collections.Generic; class GFG { // Function to find all pairs in // both arrays whose sum is equal // to given value x public static void findPairs(int[] arr1, int[] arr2, int n, int m, int x) { // Insert all elements of first // array in a hash Dictionary<int, int> s = new Dictionary<int, int>(); for (int i = 0; i < n; i++) { s[arr1[i]] = 0; } // Subtract sum from second array // elements one by one and check // it's present in array first // or not for (int j = 0; j < m; j++) { if (s.ContainsKey(x - arr2[j])) { Console.WriteLine(x - arr2[j] + " " + arr2[j]); } } } // Driver Code public static void Main(string[] args) { int[] arr1 = new int[] { 1, 0, -4, 7, 6, 4 }; int[] arr2 = new int[] { 0, 2, 4, -3, 2, 1 }; int x = 8; findPairs(arr1, arr2, arr1.Length, arr2.Length, x); } } // This code is contributed by Shrikant13
Javascript
<script> // Javascript Code for Given two unsorted arrays, // find all pairs whose sum is x // Function to find all pairs in both arrays // whose sum is equal to given value x function findPairs(arr1, arr2, n, m, x) { // Insert all elements of first array in a hash let s = new Map(); for (let i = 0; i < n; i++) s.set(arr1[i], 0); // Subtract sum from second array elements one // by one and check it's present in array first // or not for (let j = 0; j < m; j++) if (s.has(x - arr2[j])) document.write(x - arr2[j] + " " + arr2[j] + "<br/>"); } // Driver code let arr1 = [ 1, 0, -4, 7, 6, 4 ]; let arr2 = [ 0, 2, 4, -3, 2, 1 ]; let x = 8; findPairs(arr1, arr2, arr1.length, arr2.length, x); </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA