El mínimo común denominador o mínimo común denominador es el mínimo común múltiplo de los denominadores de un conjunto de fracciones.
Denominador común : cuando los denominadores de dos o más fracciones son iguales.
El mínimo común denominador es el más pequeño de todos los denominadores comunes.
¿Por qué necesitamos LCD ?
Simplifica la suma, la resta y la comparación de fracciones.
El denominador común se puede evaluar simplemente multiplicando los denominadores. En este caso, 3 * 6 = 18
Pero ese puede no ser siempre el mínimo común denominador, como en este caso LCD = 6 y no 18. LCD es en realidad MCM de denominadores.
Ejemplos:
LCD for fractions 5/12 and 7/15 is 60. We can write both fractions as 25/60 and 28/60 so that they can be added and subtracted easily. LCD for fractions 1/3 and 4/7 is 21.
Problema de ejemplo: dadas dos fracciones, encuentra su suma usando el mínimo común dominador.
Ejemplos :
Input : 1/6 + 7/15 Output : 19/30 Explanation : LCM of 6 and 15 is 30. So, 5/30 + 14/30 = 19/30 Input : 1/3 + 1/6 Output : 3/6 Explanation : LCM of 3 and 6 is 6. So, 2/6 + 1/6 = 3/6
Nota* Estas respuestas se pueden simplificar aún más mediante la cancelación anómala.
C++
// C++ Program to determine // LCD of two fractions and // Perform addition on fractions #include <iostream> using namespace std; // function to calculate gcd // or hcf of two numbers. int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // function to calculate // lcm of two numbers. int lcm(int a, int b) { return (a * b) / gcd(a, b); } void printSum(int num1, int den1, int num2, int den2) { // least common multiple // of denominators LCD // of 6 and 15 is 30. int lcd = lcm(den1, den2); // Computing the numerators for LCD: // Writing 1/6 as 5/30 and 7/15 as // 14/30 num1 *= (lcd / den1); num2 *= (lcd / den2); // Our sum is going to be res_num/lcd int res_num = num1 + num2; cout << res_num << "/" << lcd; } // Driver Code int main() { // First fraction is 1/6 int num1 = 1, den1 = 6; // Second fraction is 7/15 int num2 = 7, den2 = 15; printSum(num1, den1, num2, den2); return 0; }
Java
// Java Program to determine LCD of two // fractions and Perform addition on // fractions public class GFG { // function to calculate gcd or // hcf of two numbers. static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // function to calculate lcm of // two numbers. static int lcm(int a, int b) { return (a * b) / gcd(a, b); } static void printSum(int num1, int den1, int num2, int den2) { // least common multiple of // denominators LCD of 6 and 15 // is 30. int lcd = lcm(den1, den2); // Computing the numerators for LCD: // Writing 1/6 as 5/30 and 7/15 as // 14/30 num1 *= (lcd / den1); num2 *= (lcd / den2); // Our sum is going to be res_num/lcd int res_num = num1 + num2; System.out.print( res_num + "/" + lcd); } // Driver code public static void main(String args[]) { // First fraction is 1/6 int num1 = 1, den1 = 6; // Second fraction is 7/15 int num2 = 7, den2 = 15; printSum(num1, den1, num2, den2); } } // This code is contributed by Sam007.
Python3
# python Program to determine # LCD of two fractions and # Perform addition on fractions # function to calculate gcd # or hcf of two numbers. def gcd(a, b): if (a == 0): return b return gcd(b % a, a) # function to calculate # lcm of two numbers. def lcm(a, b): return (a * b) / gcd(a, b) def printSum(num1, den1, num2, den2): # least common multiple # of denominators LCD # of 6 and 15 is 30. lcd = lcm(den1, den2); # Computing the numerators # for LCD: Writing 1/6 as # 5/30 and 7/15 as 14/30 num1 *= (lcd / den1) num2 *= (lcd / den2) # Our sum is going to be # res_num/lcd res_num = num1 + num2; print( int(res_num) , "/" , int(lcd)) # Driver Code # First fraction is 1/6 num1 = 1 den1 = 6 # Second fraction is 7/15 num2 = 7 den2 = 15 printSum(num1, den1, num2, den2); # This code is contributed # by Sam007
C#
// C# Program to determine LCD of two // fractions and Perform addition on // fractions using System; class GFG { // function to calculate gcd or // hcf of two numbers. static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // function to calculate lcm of // two numbers. static int lcm(int a, int b) { return (a * b) / gcd(a, b); } static void printSum(int num1, int den1, int num2, int den2) { // least common multiple of // denominators LCD of 6 and 15 // is 30. int lcd = lcm(den1, den2); // Computing the numerators for LCD: // Writing 1/6 as 5/30 and 7/15 as // 14/30 num1 *= (lcd / den1); num2 *= (lcd / den2); // Our sum is going to be res_num/lcd int res_num = num1 + num2; Console.Write( res_num + "/" + lcd); } // Driver code public static void Main () { // First fraction is 1/6 int num1 = 1, den1 = 6; // Second fraction is 7/15 int num2 = 7, den2 = 15; printSum(num1, den1, num2, den2); } } // This code is contributed by Sam007.
PHP
<?php // PHP Program to determine // LCD of two fractions and // Perform addition on fractions // function to calculate gcd // or hcf of two numbers. function gcd($a,$b) { if ($a == 0) return $b; return gcd($b % $a, $a); } // function to calculate // lcm of two numbers. function lcm($a,$b) { return ($a * $b) / gcd($a, $b); } function printSum($num1, $den1, $num2, $den2) { // least common multiple // of denominators // LCD of 6 and 15 is 30. $lcd = lcm($den1, $den2); // Computing the numerators for LCD: // Writing 1/6 as 5/30 and 7/15 as // 14/30 $num1 *= ($lcd / $den1); $num2 *= ($lcd / $den2); // Our sum is going to be res_num/lcd $res_num = $num1 + $num2; echo $res_num . "/" . $lcd; } // Driver Code // First fraction is 1/6 $num1 = 1; $den1 = 6; // Second fraction is 7/15 $num2 = 7; $den2 = 15; printSum($num1, $den1, $num2, $den2); // This code is contributed by Sam007. ?>
Javascript
<script> // javascript Program to determine LCD of two // fractions and Perform addition on // fractions // function to calculate gcd or // hcf of two numbers. function gcd(a , b) { if (a == 0) return b; return gcd(b % a, a); } // function to calculate lcm of // two numbers. function lcm(a , b) { return (a * b) / gcd(a, b); } function printSum(num1 , den1 , num2 , den2) { // least common multiple of // denominators LCD of 6 and 15 // is 30. var lcd = lcm(den1, den2); // Computing the numerators for LCD: // Writing 1/6 as 5/30 and 7/15 as // 14/30 num1 *= (lcd / den1); num2 *= (lcd / den2); // Our sum is going to be res_num/lcd var res_num = num1 + num2; document.write(res_num + "/" + lcd); } // Driver code // First fraction is 1/6 var num1 = 1, den1 = 6; // Second fraction is 7/15 var num2 = 7, den2 = 15; printSum(num1, den1, num2, den2); // This code is contributed by todaysgaurav </script>
Producción :
19/30
Complejidad de tiempo: O(log(max(deno1,deno2)))
Espacio auxiliar: O(log(max(deno1,deno2)))
Este artículo es una contribución de Aarti_Rathi y Shubham Rana . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA