Diseñe una pila con operaciones en el elemento medio

¿Cómo implementar una pila que admitirá las siguientes operaciones en una complejidad de tiempo O (1)
1) push() que agrega un elemento a la parte superior de la pila. 
2) pop() que elimina un elemento de la parte superior de la pila. 
3) findMiddle() que devolverá el elemento medio de la pila. 
4) deleteMiddle() que eliminará el elemento central. 
Push y pop son operaciones de pila estándar. 

Método 1:
la pregunta importante es si se debe usar una lista enlazada o una array para la implementación de la pila. 
Tenga en cuenta que necesitamos encontrar y eliminar el elemento central. Eliminar un elemento del medio no es O (1) para la array. Además, es posible que necesitemos mover el puntero del medio hacia arriba cuando empujamos un elemento y moverlo hacia abajo cuando hacemos pop(). En una lista enlazada individualmente, no es posible mover el puntero central en ambas direcciones. 
La idea es utilizar una lista doblemente enlazada (DLL). Podemos eliminar el elemento medio en el tiempo O(1) manteniendo el puntero medio. Podemos mover el puntero medio en ambas direcciones usando los punteros anterior y siguiente. 
A continuación se muestra la implementación de las operaciones push(), pop() y findMiddle(). Si hay elementos pares en la pila, findMiddle() devuelve el segundo elemento central. Por ejemplo, si la pila contiene {1, 2, 3, 4}, findMiddle() devolvería 3. 
 

C++

/* C++ Program to implement a stack
that supports findMiddle() and
deleteMiddle in O(1) time */
#include <bits/stdc++.h>
using namespace std;
  
class myStack {
    struct Node {
        int num;
        Node* next;
        Node* prev;
  
        Node(int num) { this->num = num; }
    };
  
    // Members of stack
    Node* head = NULL;
    Node* mid = NULL;
    int size = 0;
  
public:
    void push(int data)
    {
        Node* temp = new Node(data);
        if (size == 0) {
            head = temp;
            mid = temp;
            size++;
            return;
        }
  
        head->next = temp;
        temp->prev = head;
  
        // update the pointers
        head = head->next;
        if (size % 2 == 1) {
            mid = mid->next;
        }
        size++;
    }
  
    int pop()
    {
      int data=-1;
        if (size != 0) {
          data=head->num;
            if (size == 1) {
                head = NULL;
                mid = NULL;
            }
            else {
                head = head->prev;
                head->next = NULL;
                if (size % 2 == 0) {
                    mid = mid->prev;
                }
            }
            size--;
        }
      return data;
    }
  
    int findMiddle()
    {
        if (size == 0) {
            return -1;
        }
        return mid->num;
    }
  
    void deleteMiddle()
    {
        if (size != 0) {
            if (size == 1) {
                head = NULL;
                mid = NULL;
            }
            else if (size == 2) {
                head = head->prev;
                mid = mid->prev;
                head->next = NULL;
            }
            else {
                mid->next->prev = mid->prev;
                mid->prev->next = mid->next;
                if (size % 2 == 0) {
                    mid = mid->prev;
                }
                else {
                    mid = mid->next;
                }
            }
            size--;
        }
    }
};
  
int main()
{
    myStack st;
    st.push(11);
    st.push(22);
    st.push(33);
    st.push(44);
    st.push(55);
    st.push(66);
    st.push(77);
    st.push(88);
    st.push(99);
    cout <<"Popped : "<< st.pop() << endl;
    cout <<"Popped : "<< st.pop() << endl;
    cout <<"Middle Element : "<< st.findMiddle() << endl;
    st.deleteMiddle();
    cout <<"New Middle Element : "<< st.findMiddle() << endl;
    return 0;
}
// This code is contributed by Nikhil Goswami
// Updated by Amsavarthan LV

C

/* Program to implement a stack that supports findMiddle()
   and deleteMiddle in O(1) time */
#include <stdio.h>
#include <stdlib.h>
  
/* A Doubly Linked List Node */
struct DLLNode {
    struct DLLNode* prev;
    int data;
    struct DLLNode* next;
};
  
/* Representation of the stack data structure that supports
   findMiddle() in O(1) time.  The Stack is implemented
   using Doubly Linked List. It maintains pointer to head
   node, pointer to middle node and count of nodes */
struct myStack {
    struct DLLNode* head;
    struct DLLNode* mid;
    int count;
};
  
/* Function to create the stack data structure */
struct myStack* createMyStack()
{
    struct myStack* ms
        = (struct myStack*)malloc(sizeof(struct myStack));
    ms->count = 0;
    return ms;
};
  
/* Function to push an element to the stack */
void push(struct myStack* ms, int new_data)
{
    /* allocate DLLNode and put in data */
    struct DLLNode* new_DLLNode
        = (struct DLLNode*)malloc(sizeof(struct DLLNode));
    new_DLLNode->data = new_data;
  
    /* Since we are adding at the beginning,
      prev is always NULL */
    new_DLLNode->prev = NULL;
  
    /* link the old list off the new DLLNode */
    new_DLLNode->next = ms->head;
  
    /* Increment count of items in stack */
    ms->count += 1;
  
    /* Change mid pointer in two cases
       1) Linked List is empty
       2) Number of nodes in linked list is odd */
    if (ms->count == 1) {
        ms->mid = new_DLLNode;
    }
    else {
        ms->head->prev = new_DLLNode;
  
        if (ms->count & 1) // Update mid if ms->count is odd
            ms->mid = ms->mid->prev;
    }
  
    /* move head to point to the new DLLNode */
    ms->head = new_DLLNode;
}
  
/* Function to pop an element from stack */
int pop(struct myStack* ms)
{
    /* Stack underflow */
    if (ms->count == 0) {
        printf("Stack is empty\n");
        return -1;
    }
  
    struct DLLNode* head = ms->head;
    int item = head->data;
    ms->head = head->next;
  
    // If linked list doesn't become empty, update prev
    // of new head as NULL
    if (ms->head != NULL)
        ms->head->prev = NULL;
  
    ms->count -= 1;
  
    // update the mid pointer when we have even number of
    // elements in the stack, i,e move down the mid pointer.
    if (!((ms->count) & 1))
        ms->mid = ms->mid->next;
  
    free(head);
  
    return item;
}
  
// Function for finding middle of the stack
int findMiddle(struct myStack* ms)
{
    if (ms->count == 0) {
        printf("Stack is empty now\n");
        return -1;
    }
  
    return ms->mid->data;
}
  
void deleteMiddle(struct myStack* ms)
{
    if (ms->count == 0) {
        printf("Stack is empty now\n");
        return;
    }
    
    ms->count -= 1;
    ms->mid->next->prev = ms->mid->prev;
    ms->mid->prev->next = ms->mid->next;
  
    if (ms->count % 2 != 0) {
      ms->mid=ms->mid->next;
    }else {
      ms->mid=ms->mid->prev;
    }
}
  
// Driver program to test functions of myStack
int main()
{
    /* Let us create a stack using push() operation*/
    struct myStack* ms = createMyStack();
    push(ms, 11);
    push(ms, 22);
    push(ms, 33);
    push(ms, 44);
    push(ms, 55);
    push(ms, 66);
    push(ms, 77);
    push(ms, 88);
    push(ms, 99);
  
    printf("Popped : %d\n", pop(ms));
    printf("Popped : %d\n", pop(ms));
    printf("Middle Element : %d\n", findMiddle(ms));
      deleteMiddle(ms);
      printf("New Middle Element : %d\n", findMiddle(ms));
    return 0;
}
//Updated by Amsavarthan Lv

Java

/* Java Program to implement a stack that supports
findMiddle() and deleteMiddle in O(1) time */
/* A Doubly Linked List Node */
class DLLNode {
    DLLNode prev;
    int data;
    DLLNode next;
    DLLNode(int data) { this.data = data; }
}
  
/* Representation of the stack data structure that
   supports findMiddle() in O(1) time.  The Stack is
   implemented using Doubly Linked List. It maintains
   pointer to head node, pointer to middle node and
   count of nodes */
public class myStack {
    DLLNode head;
    DLLNode mid;
    DLLNode prev;
    DLLNode next;
    int size;
    /* Function to push an element to the stack */
    void push(int new_data)
    {
  
        /* allocate DLLNode and put in data */
        DLLNode new_node = new DLLNode(new_data);
        // if stack is empty
        if (size == 0) {
            head = new_node;
            mid = new_node;
            size++;
            return;
        }
        head.next = new_node;
        new_node.prev = head;
  
        head = head.next;
        if (size % 2 != 0) {
            mid = mid.next;
        }
        size++;
    }
  
    /* Function to pop an element from stack */
    int pop()
    {
        int data = -1;
        /* Stack underflow */
        if (size == 0) {
            System.out.println("Stack is empty");
            // return -1;
        }
  
        if (size != 0) {
            if (size == 1) {
                head = null;
                mid = null;
            }
            else {
                data = head.data;
                head = head.prev;
                head.next = null;
                if (size % 2 == 0) {
                    mid = mid.prev;
                }
            }
            size--;
        }
        return data;
    }
  
    // Function for finding middle of the stack
    int findMiddle()
    {
        if (size == 0) {
            System.out.println("Stack is empty now");
            return -1;
        }
        return mid.data;
    }
    void deleteMiddleElement()
    {
        // This function will not only delete the middle
        // element
        // but also update the mid in case of even and
        // odd number of Elements
        // when the size is even then findmiddle() will show the
        // second middle element as mentioned in the problem
        // statement
        if (size != 0) {
            if (size == 1) {
                head = null;
                mid = null;
            }
            else if (size == 2) {
                head = head.prev;
                mid = mid.prev;
                head.next = null;
            }
            else {
                mid.next.prev = mid.prev;
                mid.prev.next = mid.next;
                if (size % 2 == 0) {
                    mid = mid.prev;
                }
                else {
                    mid = mid.next;
                }
            }
            size--;
        }
    }
  
    // Driver program to test functions of myStack
    public static void main(String args[])
    {
        myStack ms = new myStack();
        ms.push(11);
        ms.push(22);
        ms.push(33);
        ms.push(44);
        ms.push(55);
        ms.push(66);
        ms.push(77);
        ms.push(88);
        ms.push(99);
  
        System.out.println("Popped : " + ms.pop());
        System.out.println("Popped : " + ms.pop());
        System.out.println("Middle Element : "
                           + ms.findMiddle());
        ms.deleteMiddleElement();
        System.out.println("New Middle Element : "
                           + ms.findMiddle());
    }
}
// This code is contributed by Abhishek Jha
// Updated by Amsavarthan Lv

Python3

''' Python3 Program to implement a stack 
that supports findMiddle() 
and deleteMiddle in O(1) time '''
  
''' A Doubly Linked List Node '''
  
  
class DLLNode:
  
    def __init__(self, d):
        self.prev = None
        self.data = d
        self.next = None
  
  
''' Representation of the stack 
data structure that supports 
findMiddle() in O(1) time. The 
Stack is implemented using 
Doubly Linked List. It maintains 
pointer to head node, pointer 
to middle node and count of 
nodes '''
  
  
class myStack:
  
    def __init__(self):
        self.head = None
        self.mid = None
        self.count = 0
  
  
''' Function to create the stack data structure '''
  
  
def createMyStack():
    ms = myStack()
    ms.count = 0
    return ms
  
  
''' Function to push an element to the stack '''
  
  
def push(ms, new_data):
    ''' allocate DLLNode and put in data '''
    new_DLLNode = DLLNode(new_data)
  
    ''' Since we are adding at the beginning, 
    prev is always NULL '''
    new_DLLNode.prev = None
  
    ''' link the old list off the new DLLNode '''
    new_DLLNode.next = ms.head
  
    ''' Increment count of items in stack '''
    ms.count += 1
  
    ''' Change mid pointer in two cases 
    1) Linked List is empty 
    2) Number of nodes in linked list is odd '''
    if(ms.count == 1):
        ms.mid = new_DLLNode
  
    else:
        ms.head.prev = new_DLLNode
  
        # Update mid if ms->count is odd
        if((ms.count % 2) != 0):
            ms.mid = ms.mid.prev
  
    ''' move head to point to the new DLLNode '''
    ms.head = new_DLLNode
  
  
''' Function to pop an element from stack '''
  
  
def pop(ms):
    ''' Stack underflow '''
    if(ms.count == 0):
  
        print("Stack is empty")
        return -1
  
    head = ms.head
    item = head.data
    ms.head = head.next
  
    # If linked list doesn't become empty,
    # update prev of new head as NULL
    if(ms.head != None):
        ms.head.prev = None
    ms.count -= 1
  
    # update the mid pointer when
    # we have even number of elements
    # in the stack, i,e move down
    # the mid pointer.
    if(ms.count % 2 == 0):
        ms.mid = ms.mid.next
    return item
  
# Function for finding middle of the stack
  
  
def findMiddle(ms):
    if(ms.count == 0):
        print("Stack is empty now")
        return -1
    return ms.mid.data
  
def deleteMiddle(ms):
  if(ms.count == 0):
    print("Stack is empty now")
    return
  ms.count-=1
  ms.mid.next.prev=ms.mid.prev
  ms.mid.prev.next=ms.mid.next
    
  if ms.count %2==1:
    ms.mid=ms.mid.next
  else:
    ms.mid=ms.mid.prev
  
# Driver code
if __name__ == '__main__':
  
    ms = createMyStack()
    push(ms, 11)
    push(ms, 22)
    push(ms, 33)
    push(ms, 44)
    push(ms, 55)
    push(ms, 66)
    push(ms, 77)
    push(ms, 88)
    push(ms, 99)
  
    print("Popped : " +
          str(pop(ms)))
    print("Popped : " +
          str(pop(ms)))
    print("Middle Element : " +
          str(findMiddle(ms)))
    deleteMiddle(ms)
    print("New Middle Element : " +
          str(findMiddle(ms)))
  
    # This code is contributed by rutvik_56.
    # Updated by Amsavarthan Lv

C#

/* C# Program to implement a stack
that supports findMiddle()
and deleteMiddle in O(1) time */
using System;
  
class GFG {
    /* A Doubly Linked List Node */
    public class DLLNode {
        public DLLNode prev;
        public int data;
        public DLLNode next;
        public DLLNode(int d) { data = d; }
    }
  
    /* Representation of the stack
    data structure that supports
    findMiddle() in O(1) time. The
    Stack is implemented using
    Doubly Linked List. It maintains
    pointer to head node, pointer
    to middle node and count of
    nodes */
    public class myStack {
        public DLLNode head;
        public DLLNode mid;
        public int count;
    }
  
    /* Function to create the stack data structure */
    myStack createMyStack()
    {
        myStack ms = new myStack();
        ms.count = 0;
        return ms;
    }
  
    /* Function to push an element to the stack */
    void push(myStack ms, int new_data)
    {
  
        /* allocate DLLNode and put in data */
        DLLNode new_DLLNode = new DLLNode(new_data);
  
        /* Since we are adding at the beginning,
        prev is always NULL */
        new_DLLNode.prev = null;
  
        /* link the old list off the new DLLNode */
        new_DLLNode.next = ms.head;
  
        /* Increment count of items in stack */
        ms.count += 1;
  
        /* Change mid pointer in two cases
        1) Linked List is empty
        2) Number of nodes in linked list is odd */
        if (ms.count == 1) {
            ms.mid = new_DLLNode;
        }
        else {
            ms.head.prev = new_DLLNode;
  
            // Update mid if ms->count is odd
            if ((ms.count % 2) != 0)
                ms.mid = ms.mid.prev;
        }
  
        /* move head to point to the new DLLNode */
        ms.head = new_DLLNode;
    }
  
    /* Function to pop an element from stack */
    int pop(myStack ms)
    {
        /* Stack underflow */
        if (ms.count == 0) {
            Console.WriteLine("Stack is empty");
            return -1;
        }
  
        DLLNode head = ms.head;
        int item = head.data;
        ms.head = head.next;
  
        // If linked list doesn't become empty,
        // update prev of new head as NULL
        if (ms.head != null)
            ms.head.prev = null;
  
        ms.count -= 1;
  
        // update the mid pointer when
        // we have even number of elements
        // in the stack, i,e move down
        // the mid pointer.
        if (ms.count % 2 == 0)
            ms.mid = ms.mid.next;
  
        return item;
    }
  
    // Function for finding middle of the stack
    int findMiddle(myStack ms)
    {
        if (ms.count == 0) {
            Console.WriteLine("Stack is empty now");
            return -1;
        }
        return ms.mid.data;
    }
    
  void deleteMiddle(myStack ms){
    if (ms.count == 0) {
            Console.WriteLine("Stack is empty now");
           return;
        }
      
    ms.count-=1;
    ms.mid.next.prev=ms.mid.prev;
    ms.mid.prev.next=ms.mid.next;
      
    if(ms.count %2!=0){
      ms.mid=ms.mid.next;
    }else{
     ms.mid=ms.mid.prev; 
    }
        
  }
  
    // Driver code
    public static void Main(String[] args)
    {
        GFG ob = new GFG();
        myStack ms = ob.createMyStack();
        ob.push(ms, 11);
        ob.push(ms, 22);
        ob.push(ms, 33);
        ob.push(ms, 44);
        ob.push(ms, 55);
        ob.push(ms, 66);
        ob.push(ms, 77);
      ob.push(ms, 88);
      ob.push(ms, 99);
  
        Console.WriteLine("Popped : " + ob.pop(ms));
        Console.WriteLine("Popped : " + ob.pop(ms));
        Console.WriteLine("Middle Element : "
                          + ob.findMiddle(ms));
      ob.deleteMiddle(ms);
      Console.WriteLine("New Middle Element : "
                          + ob.findMiddle(ms));
    }
}
  
// This code is contributed
// by Arnab Kundu
  
// Updated by Amsavarthan Lv

C++

#include <bits/stdc++.h>
using namespace std;
  
class myStack {
    stack<int> st;
    deque<int> dq;
  
public:
    void add(int data)
    {
        dq.push_back(data);
        if (dq.size() > st.size() + 1) {
            int temp = dq.front();
            dq.pop_front();
            st.push(temp);
        }
    }
  
    void pop()
    {
        int data = dq.back();
        dq.pop_back();
        if (st.size() > dq.size()) {
            int temp = st.top();
            st.pop();
            dq.push_front(temp);
        }
    }
  
    int getMiddleElement() { 
      return dq.front(); 
    }
  
    void deleteMiddleElement()
    {
        dq.pop_front();
        if (st.size() > dq.size()) { // new middle element
            int temp = st.top();     // should come at front of deque
            st.pop();
            dq.push_front(temp);
        }
    }
};
  
int main()
{
    myStack st;
    st.add(2);
    st.add(5);
    cout << "Middle Element: " << st.getMiddleElement() << endl;
    st.add(3);
    st.add(7);
    st.add(4);
    cout << "Middle Element: " << st.getMiddleElement() << endl;
    st.deleteMiddleElement();
    cout << "Middle Element: " << st.getMiddleElement() << endl;
    st.deleteMiddleElement();
    cout << "Middle Element: " << st.getMiddleElement() << endl;
    st.pop();
    st.pop();
    st.deleteMiddleElement();
}
  
//By- Vijay Chadokar

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *