Divida la array dada en K sub-arrays de modo que la suma máxima de todas las sub-arrays sea mínima

Dado un Array[] de N elementos y un número K. ( 1 <= K <= N ) . Divida la array dada en K subarreglos (deben cubrir todos los elementos). La suma máxima de subarreglos que se puede lograr de los K subarreglos formados debe ser la mínima posible. Encuentre esa posible suma de subarreglo.
Ejemplos:

Entrada: Array[] = {1, 2, 3, 4}, K = 3 
Salida:
La división óptima es {1, 2}, {3}, {4}. La suma máxima de todos los subarreglos es 4, que es el mínimo posible para 3 divisiones.
Entrada: Array[] = {1, 1, 2} K = 2 
Salida:

Enfoque ingenuo:

  • La idea es averiguar todas las posibilidades.
  • Para averiguar todas las posibilidades utilizamos BACKTRACKING .
  • En cada paso, dividimos la array en sub-array y encontramos la suma de la sub-array y actualizamos la suma máxima

A continuación se muestra la implementación del enfoque anterior:

C++

#include <bits/stdc++.h>
using namespace std;
int ans = 100000000;
// the answer is stored in ans
// we call this function solve
void solve(int a[], int n, int k, int index, int sum,
           int maxsum)
{
    // K=1 is the base Case
    if (k == 1) {
        maxsum = max(maxsum, sum);
        sum = 0;
        for (int i = index; i < n; i++) {
            sum += a[i];
        }
        // we update maxsum
        maxsum = max(maxsum, sum);
        // the answer is stored in ans
        ans = min(ans, maxsum);
        return;
    }
    sum = 0;
    // using for loop to divide the array into K-subarray
    for (int i = index; i < n; i++) {
        sum += a[i];
        // for each subarray we calculate sum ans update
        // maxsum
        maxsum = max(maxsum, sum);
        // calling function again
        solve(a, n, k - 1, i + 1, sum, maxsum);
    }
}
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4 };
    int k = 3; // K divisions
    int n = 4; // Size of Array
    solve(arr, n, k, 0, 0, 0);
    cout << ans << "\n";
}

C

#include <stdio.h>
int ans = 100000000;
// the answer is stored in ans
// we call this function solve
// max function is used to find max of two elements
int max(int a, int b) { return a > b ? a : b; }
// min function is used to find min of two elements
int min(int a, int b) { return a < b ? a : b; }
void solve(int a[], int n, int k, int index, int sum,
           int maxsum)
{
    // K=1 is the base Case
    if (k == 1) {
        maxsum = max(maxsum, sum);
        sum = 0;
        for (int i = index; i < n; i++) {
            sum += a[i];
        }
        // we update maxsum
        maxsum = max(maxsum, sum);
        // the answer is stored in ans
        ans = min(ans, maxsum);
        return;
    }
    sum = 0;
    // using for loop to divide the array into K-subarray
    for (int i = index; i < n; i++) {
        sum += a[i];
        // for each subarray we calculate sum ans update
        // maxsum
        maxsum = max(maxsum, sum);
        // calling function again
        solve(a, n, k - 1, i + 1, sum, maxsum);
    }
}
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4 };
    int k = 3; // K divisions
    int n = 4; // Size of Array
    solve(arr, n, k, 0, 0, 0);
    printf("%d", ans);
}

Java

class GFG {
    public static int ans = 10000000;
    public static void solve(int a[], int n, int k,
                             int index, int sum, int maxsum)
    {
        // K=1 is the base Case
        if (k == 1) {
            maxsum = Math.max(maxsum, sum);
            sum = 0;
            for (int i = index; i < n; i++) {
                sum += a[i];
            }
            // we update maxsum
            maxsum = Math.max(maxsum, sum);
            // the answer is stored in ans
            ans = Math.min(ans, maxsum);
            return;
        }
        sum = 0;
        // using for loop to divide the array into
        // K-subarray
        for (int i = index; i < n; i++) {
            sum += a[i];
            // for each subarray we calculate sum ans update
            // maxsum
            maxsum = Math.max(maxsum, sum);
            // calling function again
            solve(a, n, k - 1, i + 1, sum, maxsum);
        }
    }
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 3, 4 };
        int k = 3; // K divisions
        int n = 4; // Size of Array
        solve(arr, n, k, 0, 0, 0);
        System.out.println(ans + "\n");
    }
}

Python3

ans = 10000000
 
def solve(a, n, k, index, sum, maxsum):
    global ans
     
    # K=1 is the base Case
    if (k == 1):
        maxsum = max(maxsum, sum)
        sum = 0
        for i in range(index,n):
            sum += a[i]
 
        # we update maxsum
        maxsum = max(maxsum, sum)
         
        # the answer is stored in ans
        ans = min(ans, maxsum)
        return
 
    sum = 0
     
    # using for loop to divide the array into
    # K-subarray
    for i in range(index, n):
        sum += a[i]
         
        # for each subarray we calculate sum ans update
        # maxsum
        maxsum = max(maxsum, sum)
         
        # calling function again
        solve(a, n, k - 1, i + 1, sum, maxsum)
     
# driver code
     
arr = [ 1, 2, 3, 4 ]
k = 3 # K divisions
n = 4 # Size of Array
solve(arr, n, k, 0, 0, 0)
print(ans)
     
# this code is contributed by shinjanpatra

C#

using System;
class GFG {
    public static int ans = 10000000;
    public static void solve(int []a, int n, int k,
                            int index, int sum, int maxsum)
    {
       
        // K=1 is the base Case
        if (k == 1) {
            maxsum = Math.Max(maxsum, sum);
            sum = 0;
            for (int i = index; i < n; i++) {
                sum += a[i];
            }
           
            // we update maxsum
            maxsum = Math.Max(maxsum, sum);
           
            // the answer is stored in ans
            ans = Math.Min(ans, maxsum);
            return;
        }
        sum = 0;
       
        // using for loop to divide the array into
        // K-subarray
        for (int i = index; i < n; i++) {
            sum += a[i];
           
            // for each subarray we calculate sum ans update
            // maxsum
            maxsum = Math.Max(maxsum, sum);
           
            // calling function again
            solve(a, n, k - 1, i + 1, sum, maxsum);
        }
    }
   
  // Driver code
    public static void Main(String[] args)
    {
        int []arr = { 1, 2, 3, 4 };
        int k = 3; // K divisions
        int n = 4; // Size of Array
        solve(arr, n, k, 0, 0, 0);
        Console.Write(ans + "\n");
    }
}
 
// This code is contributed by shivanisinghss2110

Javascript

<script>
var ans = 10000000;
 
function solve(a, n, k, index, sum, maxsum)
    {
        // K=1 is the base Case
        if (k == 1) {
            maxsum = Math.max(maxsum, sum);
            sum = 0;
            for (var i = index; i < n; i++) {
                sum += a[i];
            }
            // we update maxsum
            maxsum = Math.max(maxsum, sum);
            // the answer is stored in ans
            ans = Math.min(ans, maxsum);
            return;
        }
        sum = 0;
         
        // using for loop to divide the array into
        // K-subarray
        for (var i = index; i < n; i++) {
            sum += a[i];
             
            // for each subarray we calculate sum ans update
            // maxsum
            maxsum = Math.max(maxsum, sum);
             
            // calling function again
            solve(a, n, k - 1, i + 1, sum, maxsum);
        }
    }
     
        var arr = [ 1, 2, 3, 4 ];
        var k = 3; // K divisions
        var n = 4; // Size of Array
        solve(arr, n, k, 0, 0, 0);
        document.write(ans + "\n");
         
        // this code is contributed by shivanisinghss2110
</script>
Producción

4

Complejidad de tiempo : O((N−1)c(K−1) ( NOTA: ‘c’ aquí representa combinaciones, es decir ((n-1)!/((nk)!*(k-1)!)

 Donde N es el número de elementos del arreglo y K es el número de divisiones.

Enfoque eficiente: 

  • La idea es utilizar la búsqueda binaria para encontrar una solución óptima.
  • Para la búsqueda binaria, la suma mínima puede ser 1 y la suma máxima puede ser la suma de todos los elementos.
  • Para verificar si mid es la suma máxima de subarreglo posible. Mantenga un conteo de subarreglos, incluya todos los elementos posibles en el subarreglo hasta que su suma sea menor que la mitad. Después de esta evaluación, si el conteo es menor o igual a K, entonces se puede lograr la mitad, de lo contrario no. (Dado que si el recuento es menor que K, podemos dividir aún más cualquier subarreglo, su suma nunca aumentará mid).
  • Encuentre el valor mínimo posible de mid que satisfaga la condición.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if mid can
// be maximum sub - arrays sum
bool check(int mid, int array[], int n, int K)
{
    int count = 0;
    int sum = 0;
    for (int i = 0; i < n; i++) {
 
        // If individual element is greater
        // maximum possible sum
        if (array[i] > mid)
            return false;
 
        // Increase sum of current sub - array
        sum += array[i];
 
        // If the sum is greater than
        // mid increase count
        if (sum > mid) {
            count++;
            sum = array[i];
        }
    }
    count++;
 
    // Check condition
    if (count <= K)
        return true;
    return false;
}
 
// Function to find maximum subarray sum
// which is minimum
int solve(int array[], int n, int K)
{
    int* max = max_element(array, array + n);
    int start = *max; //Max subarray sum, considering subarray of length 1
    int end = 0;
 
    for (int i = 0; i < n; i++) {
        end += array[i]; //Max subarray sum, considering subarray of length n
    }
 
    // Answer stores possible
    // maximum sub array sum
    int answer = 0;
    while (start <= end) {
        int mid = (start + end) / 2;
 
        // If mid is possible solution
        // Put answer = mid;
        if (check(mid, array, n, K)) {
            answer = mid;
            end = mid - 1;
        }
        else {
            start = mid + 1;
        }
    }
 
    return answer;
}
 
// Driver Code
int main()
{
    int array[] = { 1, 2, 3, 4 };
    int n = sizeof(array) / sizeof(array[0]);
    int K = 3;
    cout << solve(array, n, K);
}

Java

// Java implementation of the above approach
class GFG {
 
    // Function to check if mid can
    // be maximum sub - arrays sum
    static boolean check(int mid, int array[], int n, int K)
    {
 
        int count = 0;
        int sum = 0;
        for (int i = 0; i < n; i++) {
 
            // If individual element is greater
            // maximum possible sum
            if (array[i] > mid)
                return false;
 
            // Increase sum of current sub - array
            sum += array[i];
 
            // If the sum is greater than
            // mid increase count
            if (sum > mid) {
                count++;
                sum = array[i];
            }
        }
        count++;
 
        // Check condition
        if (count <= K)
            return true;
        return false;
    }
 
    // Function to find maximum subarray sum
    // which is minimum
    static int solve(int array[], int n, int K)
    {
        int start = 1;
        for (int i = 0; i < n; ++i) {
            if (array[i] > start)
                start = array[i]; //Max subarray sum, considering subarray of length 1
        }
        int end = 0;
 
        for (int i = 0; i < n; i++) {
            end += array[i]; //Max subarray sum, considering subarray of length n
        }
 
        // Answer stores possible
        // maximum sub array sum
        int answer = 0;
        while (start <= end) {
            int mid = (start + end) / 2;
 
            // If mid is possible solution
            // Put answer = mid;
            if (check(mid, array, n, K)) {
                answer = mid;
                end = mid - 1;
            }
            else {
                start = mid + 1;
            }
        }
 
        return answer;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int array[] = { 1, 2, 3, 4 };
        int n = array.length;
        int K = 3;
        System.out.println(solve(array, n, K));
    }
}
 
// This code is contributed by AnkitRai01

Python3

# Python 3 implementation of the above approach
 
# Function to check if mid can
# be maximum sub - arrays sum
def check(mid, array, n, K):
    count = 0
    sum = 0
    for i in range(n):
         
        # If individual element is greater
        # maximum possible sum
        if (array[i] > mid):
            return False
 
        # Increase sum of current sub - array
        sum += array[i]
 
        # If the sum is greater than
        # mid increase count
        if (sum > mid):
            count += 1
            sum = array[i]
    count += 1
 
    # Check condition
    if (count <= K):
        return True
    return False
 
# Function to find maximum subarray sum
# which is minimum
def solve(array, n, K):
   
    start = max(array) #Max subarray sum, considering subarray of length 1
    end = 0
 
    for i in range(n):
        end += array[i] #Max subarray sum, considering subarray of length n
 
    # Answer stores possible
    # maximum sub array sum
    answer = 0
    while (start <= end):
        mid = (start + end) // 2
 
        # If mid is possible solution
        # Put answer = mid;
        if (check(mid, array, n, K)):
            answer = mid
            end = mid - 1
        else:
            start = mid + 1
 
    return answer
 
# Driver Code
if __name__ == '__main__':
    array = [1, 2, 3, 4]
    n = len(array)
    K = 3
    print(solve(array, n, K))
     
# This code is contributed by
# Surendra_Gangwar

C#

// C# implementation of the above approach
using System;
     
class GFG
{
     
    // Function to check if mid can
    // be maximum sub - arrays sum
    static Boolean check(int mid, int []array,
                                int n, int K)
    {
         
        int count = 0;
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
     
            // If individual element is greater
            // maximum possible sum
            if (array[i] > mid)
                return false;
     
            // Increase sum of current sub - array
            sum += array[i];
     
            // If the sum is greater than
            // mid increase count
            if (sum > mid)
            {
                count++;
                sum = array[i];
            }
        }
        count++;
     
        // Check condition
        if (count <= K)
            return true;
        return false;
    }
     
    // Function to find maximum subarray sum
    // which is minimum
    static int solve(int []array, int n, int K)
    {
        int start = 1;
        for (int i = 0; i < n; ++i) {
            if (array[i] > start)
                start = array[i]; //Max subarray sum, considering subarray of length 1
        }
        int end = 0;
     
        for (int i = 0; i < n; i++)
        {
            end += array[i];  //Max subarray sum, considering subarray of length n
        }
     
        // Answer stores possible
        // maximum sub array sum
        int answer = 0;
        while (start <= end)
        {
            int mid = (start + end) / 2;
     
            // If mid is possible solution
            // Put answer = mid;
            if (check(mid, array, n, K))
            {
                answer = mid;
                end = mid - 1;
            }
            else
            {
                start = mid + 1;
            }
        }
     
        return answer;
    }
     
    // Driver Code
    public static void Main (String[] args)
    {
        int []array = { 1, 2, 3, 4 };
        int n = array.Length ;
        int K = 3;
        Console.WriteLine(solve(array, n, K));
    }
}
 
// This code is contributed by Princi Singh

Javascript

<script>
// Javascript implementation of the above approach
 
// Function to check if mid can
// be maximum sub - arrays sum
function check(mid, array, n, K)
{
    var count = 0;
    var sum = 0;
    for (var i = 0; i < n; i++) {
 
        // If individual element is greater
        // maximum possible sum
        if (array[i] > mid)
            return false;
 
        // Increase sum of current sub - array
        sum += array[i];
 
        // If the sum is greater than
        // mid increase count
        if (sum > mid) {
            count++;
            sum = array[i];
        }
    }
    count++;
 
    // Check condition
    if (count <= K)
        return true;
    return false;
}
 
// Function to find maximum subarray sum
// which is minimum
function solve(array, n, K)
{
    var max = array.reduce((a,b)=>Math.max(a,b));
    var start = max; //Max subarray sum, considering subarray of length 1
    var end = 0;
 
    for (var i = 0; i < n; i++) {
        end += array[i]; //Max subarray sum, considering subarray of length n
    }
 
    // Answer stores possible
    // maximum sub array sum
    var answer = 0;
    while (start <= end) {
        var mid = parseInt((start + end) / 2);
 
        // If mid is possible solution
        // Put answer = mid;
        if (check(mid, array, n, K)) {
            answer = mid;
            end = mid - 1;
        }
        else {
            start = mid + 1;
        }
    }
 
    return answer;
}
 
// Driver Code
var array = [1, 2, 3, 4];
var n = array.length;
var K = 3;
document.write( solve(array, n, K));
 
</script>
Producción

4

Complejidad de tiempo: O(N*log(Sum)) 
Donde N es el número de elementos de la array y Sum es la suma de todos los elementos de la array.

Publicación traducida automáticamente

Artículo escrito por krikti y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *