Dada una array de enteros mayores que cero, encuentre si es posible dividirla en dos subarreglos (sin reordenar los elementos), de modo que la suma de los dos subarreglos sea la misma. Imprime los dos subarreglos.
Ejemplos:
Input : Arr[] = { 1 , 2 , 3 , 4 , 5 , 5 } Output : { 1 2 3 4 } { 5 , 5 } Input : Arr[] = { 4, 1, 2, 3 } Output : {4 1} {2 3} Input : Arr[] = { 4, 3, 2, 1} Output : Not Possible
Preguntado en: entrevista de Facebook
Una solución simple es ejecutar dos bucles para dividir la array y verificar que sea posible dividir la array en dos partes, de modo que la suma de la primera parte sea igual a la suma de la segunda parte.
A continuación se muestra la implementación de la idea anterior.
C++
// C++ program to split an array into Two // equal sum subarrays #include<bits/stdc++.h> using namespace std; // Returns split point. If not possible, then // return -1. int findSplitPoint(int arr[], int n) { int leftSum = 0 ; // traverse array element for (int i = 0; i < n; i++) { // add current element to left Sum leftSum += arr[i] ; // find sum of rest array elements (rightSum) int rightSum = 0 ; for (int j = i+1 ; j < n ; j++ ) rightSum += arr[j] ; // split point index if (leftSum == rightSum) return i+1 ; } // if it is not possible to split array into // two parts return -1; } // Prints two parts after finding split point using // findSplitPoint() void printTwoParts(int arr[], int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { cout << "Not Possible" <<endl; return; } for (int i = 0; i < n; i++) { if(splitPoint == i) cout << endl; cout << arr[i] << " " ; } } // driver program int main() { int arr[] = {1 , 2 , 3 , 4 , 5 , 5 }; int n = sizeof(arr)/sizeof(arr[0]); printTwoParts(arr, n); return 0; }
Java
// Java program to split an array // into two equal sum subarrays import java.io.*; class GFG { // Returns split point. If // not possible, then return -1. static int findSplitPoint(int arr[], int n) { int leftSum = 0 ; // traverse array element for (int i = 0; i < n; i++) { // add current element to left Sum leftSum += arr[i] ; // find sum of rest array // elements (rightSum) int rightSum = 0 ; for (int j = i+1 ; j < n ; j++ ) rightSum += arr[j] ; // split point index if (leftSum == rightSum) return i+1 ; } // if it is not possible to // split array into two parts return -1; } // Prints two parts after finding // split point using findSplitPoint() static void printTwoParts(int arr[], int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { System.out.println("Not Possible"); return; } for (int i = 0; i < n; i++) { if(splitPoint == i) System.out.println(); System.out.print(arr[i] + " "); } } // Driver program public static void main (String[] args) { int arr[] = {1 , 2 , 3 , 4 , 5 , 5 }; int n = arr.length; printTwoParts(arr, n); } } // This code is contributed by vt_m
Python3
# Python3 program to split an array into Two # equal sum subarrays # Returns split point. If not possible, then # return -1. def findSplitPoint(arr, n) : leftSum = 0 # traverse array element for i in range(0, n) : # add current element to left Sum leftSum += arr[i] # find sum of rest array elements (rightSum) rightSum = 0 for j in range(i+1, n) : rightSum += arr[j] # split point index if (leftSum == rightSum) : return i+1 # if it is not possible to split array into # two parts return -1 # Prints two parts after finding split point using # findSplitPoint() def printTwoParts(arr, n) : splitPo = findSplitPoint(arr, n) if (splitPo == -1 or splitPo == n ) : print ("Not Possible") return for i in range(0, n) : if(splitPo == i) : print ("") print (str(arr[i]) + ' ',end='') # driver program arr = [1 , 2 , 3 , 4 , 5 , 5] n = len(arr) printTwoParts(arr, n) # This code is contributed by Manish Shaw # (manishshaw1)
C#
// C# program to split an array // into two equal sum subarrays using System; class GFG { // Returns split point. If // not possible, then return -1. static int findSplitPoint(int []arr, int n) { int leftSum = 0 ; // traverse array element for (int i = 0; i < n; i++) { // add current element to left Sum leftSum += arr[i] ; // find sum of rest array // elements (rightSum) int rightSum = 0 ; for (int j = i+1 ; j < n ; j++ ) rightSum += arr[j] ; // split point index if (leftSum == rightSum) return i+1 ; } // if it is not possible to // split array into two parts return -1; } // Prints two parts after finding // split point using findSplitPoint() static void printTwoParts(int []arr, int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { Console.Write("Not Possible"); return; } for (int i = 0; i < n; i++) { if(splitPoint == i) Console.WriteLine(); Console.Write(arr[i] + " "); } } // Driver program public static void Main () { int []arr = {1 , 2 , 3 , 4 , 5 , 5 }; int n = arr.Length; printTwoParts(arr, n); } } // This code is contributed by nitin mittal
PHP
<?php // PHP program to split // an array into Two // equal sum subarrays // Returns split point. // If not possible, then // return -1. function findSplitPoint( $arr, $n) { $leftSum = 0 ; // traverse array element for($i = 0; $i < $n; $i++) { // add current element // to left Sum $leftSum += $arr[$i] ; // find sum of rest array // elements (rightSum) $rightSum = 0 ; for($j = $i + 1 ; $j < $n ; $j++ ) $rightSum += $arr[$j] ; // split point index if ($leftSum == $rightSum) return $i+1 ; } // if it is not possible // to split array into // two parts return -1; } // Prints two parts after // finding split point using // findSplitPoint() function printTwoParts($arr, $n) { $splitPoint = findSplitPoint($arr, $n); if ($splitPoint == -1 or $splitPoint == $n ) { echo "Not Possible" ; return; } for ( $i = 0; $i < $n; $i++) { if($splitPoint == $i) echo "\n"; echo $arr[$i] , " " ; } } // Driver Code $arr = array(1 , 2 , 3 , 4 , 5 , 5); $n = count($arr); printTwoParts($arr, $n); // This code is contributed by anuj_67. ?>
Javascript
<script> // Java script program to split an array // into two equal sum subarrays // Returns split point. If // not possible, then return -1. function findSplitPoint(arr,n) { let leftSum = 0 ; // traverse array element for (let i = 0; i < n; i++) { // add current element to left Sum leftSum += arr[i] ; // find sum of rest array // elements (rightSum) let rightSum = 0 ; for (let j = i+1 ; j < n ; j++ ) rightSum += arr[j] ; // split point index if (leftSum == rightSum) return i+1 ; } // if it is not possible to // split array into two parts return -1; } // Prints two parts after finding // split point using findSplitPoint() function printTwoParts(arr,n) { let splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { document.write("Not Possible"); return; } for (let i = 0; i < n; i++) { if(splitPoint == i) document.write("<br>"); document.write(arr[i] + " "); } } // Driver program let arr = [1 , 2 , 3 , 4 , 5 , 5 ]; let n = arr.length; printTwoParts(arr, n); // contributed by sravan kumar </script>
1 2 3 4 5 5
Complejidad de Tiempo : O(n 2 )
Espacio Auxiliar : O(1)
Una solución eficiente es calcular primero la suma de toda la array de izquierda a derecha. Ahora recorremos la array desde la derecha y hacemos un seguimiento de la suma de la derecha, la suma de la izquierda se puede calcular restando el elemento actual de la suma total.
A continuación se muestra la implementación de la idea anterior.
C++
// C++ program to split an array into Two // equal sum subarrays #include<bits/stdc++.h> using namespace std; // Returns split point. If not possible, then // return -1. int findSplitPoint(int arr[], int n) { // traverse array element and compute sum // of whole array int leftSum = 0; for (int i = 0 ; i < n ; i++) leftSum += arr[i]; // again traverse array and compute right sum // and also check left_sum equal to right // sum or not int rightSum = 0; for (int i=n-1; i >= 0; i--) { // add current element to right_sum rightSum += arr[i]; // exclude current element to the left_sum leftSum -= arr[i] ; if (rightSum == leftSum) return i ; } // if it is not possible to split array // into two parts. return -1; } // Prints two parts after finding split point using // findSplitPoint() void printTwoParts(int arr[], int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { cout << "Not Possible" <<endl; return; } for (int i = 0; i < n; i++) { if(splitPoint == i) cout << endl; cout << arr[i] << " " ; } } // driver program int main() { int arr[] = {1 , 2 , 3 , 4 , 5 , 5 }; int n = sizeof(arr)/sizeof(arr[0]); printTwoParts(arr, n); return 0; }
Java
// java program to split an array // into Two equal sum subarrays import java.io.*; class GFG { // Returns split point. If not possible, then // return -1. static int findSplitPoint(int arr[], int n) { // traverse array element and compute sum // of whole array int leftSum = 0; for (int i = 0 ; i < n ; i++) leftSum += arr[i]; // again traverse array and compute right // sum and also check left_sum equal to // right sum or not int rightSum = 0; for (int i = n-1; i >= 0; i--) { // add current element to right_sum rightSum += arr[i]; // exclude current element to the left_sum leftSum -= arr[i] ; if (rightSum == leftSum) return i ; } // if it is not possible to split array // into two parts. return -1; } // Prints two parts after finding split // point using findSplitPoint() static void printTwoParts(int arr[], int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { System.out.println("Not Possible" ); return; } for (int i = 0; i < n; i++) { if(splitPoint == i) System.out.println(); System.out.print(arr[i] + " "); } } // Driver program public static void main (String[] args) { int arr[] = {1 , 2 , 3 , 4 , 5 , 5 }; int n = arr.length; printTwoParts(arr, n); } } // This code is contributed by vt_m
Python3
# Python3 program to split # an array into Two # equal sum subarrays # Returns split point. # If not possible, # then return -1. def findSplitPoint(arr, n) : # traverse array element and # compute sum of whole array leftSum = 0 for i in range(0, n) : leftSum += arr[i] # again traverse array and # compute right sum and also # check left_sum equal to # right sum or not rightSum = 0 for i in range(n-1, -1, -1) : # add current element # to right_sum rightSum += arr[i] # exclude current element # to the left_sum leftSum -= arr[i] if (rightSum == leftSum) : return i # if it is not possible # to split array into # two parts. return -1 # Prints two parts after # finding split point # using findSplitPoint() def printTwoParts(arr, n) : splitPoint = findSplitPoint(arr, n) if (splitPoint == -1 or splitPoint == n ) : print ("Not Possible") return for i in range (0, n) : if(splitPoint == i) : print ("") print (arr[i], end = " ") # Driver Code arr = [1, 2, 3, 4, 5, 5] n = len(arr) printTwoParts(arr, n) # This code is contributed by Manish Shaw # (manishshaw1)
C#
// C# program to split an array // into Two equal sum subarrays using System; class GFG { // Returns split point. If not possible, then // return -1. static int findSplitPoint(int []arr, int n) { // traverse array element and compute sum // of whole array int leftSum = 0; for (int i = 0 ; i < n ; i++) leftSum += arr[i]; // again traverse array and compute right // sum and also check left_sum equal to // right sum or not int rightSum = 0; for (int i = n-1; i >= 0; i--) { // add current element to right_sum rightSum += arr[i]; // exclude current element to the left_sum leftSum -= arr[i] ; if (rightSum == leftSum) return i ; } // if it is not possible to split array // into two parts. return -1; } // Prints two parts after finding split // point using findSplitPoint() static void printTwoParts(int []arr, int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { Console.Write("Not Possible" ); return; } for (int i = 0; i < n; i++) { if(splitPoint == i) Console.WriteLine(); Console.Write(arr[i] + " "); } } // Driver program public static void Main (String[] args) { int []arr = {1 , 2 , 3 , 4 , 5 , 5 }; int n = arr.Length; printTwoParts(arr, n); } } // This code is contributed by parashar
PHP
<?php // PHP program to split // an array into Two // equal sum subarrays // Returns split point. // If not possible, // then return -1. function findSplitPoint($arr, $n) { // traverse array element and // compute sum of whole array $leftSum = 0; for ( $i = 0 ; $i < $n ; $i++) $leftSum += $arr[$i]; // again traverse array and // compute right sum and also // check left_sum equal to // right sum or not $rightSum = 0; for ($i = $n - 1; $i >= 0; $i--) { // add current element // to right_sum $rightSum += $arr[$i]; // exclude current element // to the left_sum $leftSum -= $arr[$i] ; if ($rightSum == $leftSum) return $i ; } // if it is not possible // to split array into // two parts. return -1; } // Prints two parts after // finding split point // using findSplitPoint() function printTwoParts( $arr, $n) { $splitPoint = findSplitPoint($arr, $n); if ($splitPoint == -1 or $splitPoint == $n ) { echo "Not Possible" ; return; } for ( $i = 0; $i < $n; $i++) { if($splitPoint == $i) echo "\n"; echo $arr[$i] , " " ; } } // Driver Code $arr = array(1, 2, 3, 4, 5, 5); $n = count($arr); printTwoParts($arr, $n); // This code is contributed by anuj_67. ?>
Javascript
<script> // Javascript program to split an array // into Two equal sum subarrays // Returns split point. If not possible, then // return -1. function findSplitPoint(arr, n) { // traverse array element and compute sum // of whole array let leftSum = 0; for (let i = 0 ; i < n ; i++) leftSum += arr[i]; // again traverse array and compute right // sum and also check left_sum equal to // right sum or not let rightSum = 0; for (let i = n-1; i >= 0; i--) { // add current element to right_sum rightSum += arr[i]; // exclude current element to the left_sum leftSum -= arr[i] ; if (rightSum == leftSum) return i ; } // if it is not possible to split array // into two parts. return -1; } // Prints two parts after finding split // point using findSplitPoint() function printTwoParts(arr, n) { let splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { document.write("Not Possible" ); return; } for (let i = 0; i < n; i++) { if(splitPoint == i) document.write("</br>"); document.write(arr[i] + " "); } } let arr = [1 , 2 , 3 , 4 , 5 , 5 ]; let n = arr.length; printTwoParts(arr, n); // This code is contributed by rameshtravel07. </script>
1 2 3 4 5 5
Tiempo Complejidad : O(n)
Espacio Auxiliar : O(1)
Tema relacionado: Subarrays, subsecuencias y subconjuntos en array
Este artículo es una contribución de Nishant Singh . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA