Dado un rectángulo de largo l y ancho b , tenemos que encontrar el círculo más grande que se puede inscribir en el rectángulo.
Ejemplos:
Input : l = 4, b = 8 Output : 12.56 Input : l = 16 b = 6 Output : 28.26
De la figura podemos ver que el círculo más grande que se puede inscribir en el rectángulo tendrá un radio siempre igual a la mitad del lado más corto del rectángulo. Así que de la figura,
radio, r = b/2 &
Área, A = π * (r^2)
C++
// C++ Program to find the biggest circle // which can be inscribed within the rectangle #include <bits/stdc++.h> using namespace std; // Function to find the area // of the biggest circle float circlearea(float l, float b) { // the length and breadth cannot be negative if (l < 0 || b < 0) return -1; // area of the circle if (l < b) return 3.14 * pow(l / 2, 2); else return 3.14 * pow(b / 2, 2); } // Driver code int main() { float l = 4, b = 8; cout << circlearea(l, b) << endl; return 0; }
Java
// Java Program to find the // biggest circle which can be // inscribed within the rectangle class GFG { // Function to find the area // of the biggest circle static float circlearea(float l, float b) { // the length and breadth // cannot be negative if (l < 0 || b < 0) return -1; // area of the circle if (l < b) return (float)(3.14 * Math.pow(l / 2, 2)); else return (float)(3.14 * Math.pow(b / 2, 2)); } // Driver code public static void main(String[] args) { float l = 4, b = 8; System.out.println(circlearea(l, b)); } } // This code is contributed // by ChitraNayal
Python 3
# Python 3 Program to find the # biggest circle which can be # inscribed within the rectangle # Function to find the area # of the biggest circle def circlearea(l, b): # the length and breadth # cannot be negative if (l < 0 or b < 0): return -1 # area of the circle if (l < b): return 3.14 * pow(l // 2, 2) else: return 3.14 * pow(b // 2, 2) # Driver code if __name__ == "__main__": l = 4 b = 8 print(circlearea(l, b)) # This code is contributed # by ChitraNayal
C#
// C# Program to find the // biggest circle which can be // inscribed within the rectangle using System; class GFG { // Function to find the area // of the biggest circle static float circlearea(float l, float b) { // the length and breadth // cannot be negative if (l < 0 || b < 0) return -1; // area of the circle if (l < b) return (float)(3.14 * Math.Pow(l / 2, 2)); else return (float)(3.14 * Math.Pow(b / 2, 2)); } // Driver code public static void Main() { float l = 4, b = 8; Console.Write(circlearea(l, b)); } } // This code is contributed // by ChitraNayal
PHP
<?php // PHP Program to find the // biggest circle which can be // inscribed within the rectangle // Function to find the area // of the biggest circle function circlearea($l, $b) { // the length and breadth // cannot be negative if ($l < 0 || $b < 0) return -1; // area of the circle if ($l < $b) return 3.14 * pow($l / 2, 2); else return 3.14 * pow($b / 2, 2); } // Driver code $l = 4; $b = 8; echo circlearea($l, $b)."\n"; // This code is contributed // by ChitraNayal ?>
Javascript
<script> // javascript Program to find the // biggest circle which can be // inscribed within the rectangle // Function to find the area // of the biggest circle function circlearea(l, b) { // the length and breadth // cannot be negative if (l < 0 || b < 0) return -1; // area of the circle if (l < b) return (3.14 * Math.pow(l / 2, 2)); else return (3.14 * Math.pow(b / 2, 2)); } // Driver code var l = 4, b = 8; document.write(circlearea(l, b)); // This code is contributed by Amit Katiyar </script>
Producción:
12.56
Complejidad del tiempo: O(log l/2+log b/2)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA