Cubo más grande que se puede inscribir dentro de un cilindro circular recto

Aquí se da un cilindro circular recto de altura h y radio r . La tarea es encontrar el volumen del cubo más grande que se puede inscribir en él.
Ejemplos
 

Input: h = 3, r = 2
Output: volume = 27

Input: h = 5, r = 4
Output: volume = 125
 


 

Enfoque : De la figura, se puede entender claramente que lado del cubo = altura del cilindro
Entonces, el volumen = (altura) ^ 3 
A continuación se muestra la implementación del enfoque anterior:

C++

// C++ Program to find the biggest cube
// inscribed within a right circular cylinder
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the volume of the cube
float cube(float h, float r)
{
 
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
 
    // volume of the cube
    float a = pow(h, 3);
 
    return a;
}
 
// Driver code
int main()
{
    float h = 5, r = 4;
    cout << cube(h, r) << endl;
 
    return 0;
}

Java

// Java Program to find the biggest cube
// inscribed within a right circular cylinder
class Solution
{
     
 
// Function to find the volume of the cube
static float cube(float h, float r)
{
 
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
 
    // volume of the cube
    float a = (float)Math.pow(h, 3);
 
    return a;
}
 
// Driver code
public static void main(String args[])
{
    float h = 5, r = 4;
    System.out.println( cube(h, r) );
}
}
//contributed by Arnab Kundu

Python 3

# Python 3 Program to find the biggest cube
# inscribed within a right circular cylinder
import math
 
# Function to find the volume of the cube
def cube(h, r):
 
    # height and radius cannot be negative
    if (h < 0 and r < 0):
        return -1
 
    # volume of the cube
    a = math.pow(h, 3)
 
    return a
 
# Driver code
h = 5; r = 4;
print(cube(h, r));
 
# This code is contributed
# by Akanksha Rai

C#

// C# Program to find the biggest
// cube inscribed within a right
// circular cylinder
using System;
                     
class GFG
{
 
// Function to find the volume
// of the cube
static float cube(float h, float r)
{
 
    // height and radius cannot
    // be negative
    if (h < 0 && r < 0)
        return -1;
 
    // volume of the cube
    float a = (float)Math.Pow(h, 3);
 
    return a;
}
 
// Driver code
public static void Main()
{
    float h = 5, r = 4;
    Console.Write( cube(h, r) );
}
}
 
// This code is contributed
// by 29AjayKumar

PHP

<?php
// PHP Program to find the biggest 
// cube inscribed within a right
// circular cylinder
 
// Function to find the volume
// of the cube
function cube($h, $r)
{
 
    // height and radius cannot
    // be negative
    if ($h < 0 && $r < 0)
        return -1;
 
    // volume of the cube
    $a = pow($h, 3);
 
    return $a;
}
 
// Driver code
$h = 5;
$r = 4;
echo cube($h, $r);
 
// This code is contributed by @Tushil.
?>

Javascript

<script>
 
// javascript Program to find the biggest cube
// inscribed within a right circular cylinder
 
// Function to find the volume of the cube
function cube(h , r)
{
 
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
 
    // volume of the cube
    var a = Math.pow(h, 3);
 
    return a;
}
 
// Driver code
  
var h = 5, r = 4;
document.write( cube(h, r) );
 
// This code is contributed by 29AjayKumar
 
</script>
Producción: 

125

 

Complejidad de tiempo: O(1)
Espacio auxiliar: O(1), ya que no estamos utilizando ningún espacio adicional.

Publicación traducida automáticamente

Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *