Dado un árbol binario, encuentre el Node de hoja más profundo que queda como hijo de su padre. Por ejemplo, considere el siguiente árbol. El Node de hoja izquierdo más profundo es el Node con valor 9.
Ejemplos:
Input : 1 / \ 2 3 / / \ 4 5 6 \ \ 7 8 / \ 9 10 Output : 9
El enfoque recursivo de este problema se analiza aquí
. Para el enfoque iterativo, la idea es similar al Método 2 de recorrido por orden de nivel.
La idea es atravesar el árbol de forma iterativa y cada vez que un Node del árbol izquierdo se pone en cola, verifique si es un Node de hoja, si es Node hoja, luego actualice el resultado. Como vamos nivel por nivel, el último Node hoja almacenado es el más profundo,
Implementación:
C++
// CPP program to find deepest left leaf // node of binary tree #include <bits/stdc++.h> using namespace std; // tree node struct Node { int data; Node *left, *right; }; // returns a new tree Node Node* newNode(int data) { Node* temp = new Node(); temp->data = data; temp->left = temp->right = NULL; return temp; } // return the deepest left leaf node // of binary tree Node* getDeepestLeftLeafNode(Node* root) { if (!root) return NULL; // create a queue for level order traversal queue<Node*> q; q.push(root); Node* result = NULL; // traverse until the queue is empty while (!q.empty()) { Node* temp = q.front(); q.pop(); // Since we go level by level, the last // stored left leaf node is deepest one, if (temp->left) { q.push(temp->left); if (!temp->left->left && !temp->left->right) result = temp->left; } if (temp->right) q.push(temp->right); } return result; } // driver program int main() { // construct a tree Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->right->left = newNode(5); root->right->right = newNode(6); root->right->left->right = newNode(7); root->right->right->right = newNode(8); root->right->left->right->left = newNode(9); root->right->right->right->right = newNode(10); Node* result = getDeepestLeftLeafNode(root); if (result) cout << "Deepest Left Leaf Node :: " << result->data << endl; else cout << "No result, left leaf not found\n"; return 0; }
Java
// Java program to find deepest left leaf // node of binary tree import java.util.*; class GFG { // tree node static class Node { int data; Node left, right; }; // returns a new tree Node static Node newNode(int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null; return temp; } // return the deepest left leaf node // of binary tree static Node getDeepestLeftLeafNode(Node root) { if (root == null) return null; // create a queue for level order traversal Queue<Node> q = new LinkedList<>(); q.add(root); Node result = null; // traverse until the queue is empty while (!q.isEmpty()) { Node temp = q.peek(); q.remove(); // Since we go level by level, the last // stored left leaf node is deepest one, if (temp.left != null) { q.add(temp.left); if (temp.left.left == null && temp.left.right == null) result = temp.left; } if (temp.right != null) q.add(temp.right); } return result; } // Driver Code public static void main(String[] args) { // construct a tree Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.right.left = newNode(5); root.right.right = newNode(6); root.right.left.right = newNode(7); root.right.right.right = newNode(8); root.right.left.right.left = newNode(9); root.right.right.right.right = newNode(10); Node result = getDeepestLeftLeafNode(root); if (result != null) System.out.println("Deepest Left Leaf Node :: " + result.data); else System.out.println("No result, " + "left leaf not found"); } } // This code is contributed by Rajput-Ji
Python3
# Python3 program to find deepest # left leaf Binary search Tree _MIN = -2147483648 _MAX = 2147483648 # Helper function that allocates a new # node with the given data and None # left and right pointers. class newnode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # utility function to return deepest # left leaf node def getDeepestLeftLeafNode(root) : if (not root): return None # create a queue for level # order traversal q = [] q.append(root) result = None # traverse until the queue is empty while (len(q)): temp = q[0] q.pop(0) if (temp.left): q.append(temp.left) if (not temp.left.left and not temp.left.right): result = temp.left # Since we go level by level, # the last stored right leaf # node is deepest one if (temp.right): q.append(temp.right) return result # Driver Code if __name__ == '__main__': # create a binary tree root = newnode(1) root.left = newnode(2) root.right = newnode(3) root.left.Left = newnode(4) root.right.left = newnode(5) root.right.right = newnode(6) root.right.left.right = newnode(7) root.right.right.right = newnode(8) root.right.left.right.left = newnode(9) root.right.right.right.right = newnode(10) result = getDeepestLeftLeafNode(root) if result: print("Deepest Left Leaf Node ::", result.data) else: print("No result, Left leaf not found") # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
C#
// C# program to find deepest left leaf // node of binary tree using System; using System.Collections.Generic; class GFG { // tree node class Node { public int data; public Node left, right; }; // returns a new tree Node static Node newNode(int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null; return temp; } // return the deepest left leaf node // of binary tree static Node getDeepestLeftLeafNode(Node root) { if (root == null) return null; // create a queue for level order traversal Queue<Node> q = new Queue<Node>(); q.Enqueue(root); Node result = null; // traverse until the queue is empty while (q.Count != 0) { Node temp = q.Peek(); q.Dequeue(); // Since we go level by level, the last // stored left leaf node is deepest one, if (temp.left != null) { q.Enqueue(temp.left); if (temp.left.left == null && temp.left.right == null) result = temp.left; } if (temp.right != null) q.Enqueue(temp.right); } return result; } // Driver Code public static void Main(String[] args) { // construct a tree Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.right.left = newNode(5); root.right.right = newNode(6); root.right.left.right = newNode(7); root.right.right.right = newNode(8); root.right.left.right.left = newNode(9); root.right.right.right.right = newNode(10); Node result = getDeepestLeftLeafNode(root); if (result != null) Console.WriteLine("Deepest Left Leaf Node :: " + result.data); else Console.WriteLine("No result, " + "left leaf not found"); } } // This code is contributed by Rajput-Ji
Javascript
<script> // JavaScript program to find deepest // left leaf node of binary tree class Node { constructor(data) { this.left = null; this.right = null; this.data = data; } } // returns a new tree Node function newNode(data) { let temp = new Node(data); return temp; } // return the deepest left leaf node // of binary tree function getDeepestLeftLeafNode(root) { if (root == null) return null; // create a queue for level order traversal let q = []; q.push(root); let result = null; // traverse until the queue is empty while (q.length > 0) { let temp = q[0]; q.shift(); // Since we go level by level, the last // stored left leaf node is deepest one, if (temp.left != null) { q.push(temp.left); if (temp.left.left == null && temp.left.right == null) result = temp.left; } if (temp.right != null) q.push(temp.right); } return result; } // construct a tree let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.right.left = newNode(5); root.right.right = newNode(6); root.right.left.right = newNode(7); root.right.right.right = newNode(8); root.right.left.right.left = newNode(9); root.right.right.right.right = newNode(10); let result = getDeepestLeftLeafNode(root); if (result != null) document.write("Deepest Left Leaf Node :: " + result.data); else document.write("No result, " + "left leaf not found"); </script>
Producción
Deepest Left Leaf Node::9