Subconjunto más largo tal que los elementos adyacentes tienen al menos un dígito común | Serie 1

Dado un arreglo de N enteros, escriba un programa que imprima la longitud del subarreglo más largo de modo que los elementos adyacentes del subarreglo tengan al menos un dígito en común. 

Ejemplos: 

Input : 12 23 45 43 36 97 
Output : 3 
Explanation: The subarray is 45 43 36 which has 
4 common in 45, 43 and 3 common in 43, 36. 

Input : 11 22 33 44 54 56 63
Output : 4
Explanation: Subarray is 44, 54, 56, 63 

Un enfoque normal será verificar todos los subarreglos posibles. Pero la complejidad temporal será O(n 2 ). 
Un enfoque eficiente será crear una array hash[n][10] que marque la aparición de dígitos en el i-ésimo número de índice. Iteramos para cada elemento y verificamos si los elementos adyacentes tienen un dígito común entre ellos. Si tienen un dígito común, mantenemos la cuenta de la longitud. Si los elementos adyacentes no tienen un dígito en común, inicializamos el conteo a cero y comenzamos a contar nuevamente para un subarreglo. Imprime el recuento máximo que se obtiene durante la iteración. Usamos una array hash para minimizar la complejidad del tiempo, ya que el número puede estar en el rango de 10 ^ 18, lo que tomará 18 iteraciones en el peor de los casos. 
A continuación se muestra la ilustración del enfoque anterior: 

C++

// CPP program to print the length of the
// longest subarray such that adjacent elements
// of the subarray have at least one digit in
// common.
#include <bits/stdc++.h>
using namespace std;
 
// function to print the longest subarray
// such that adjacent elements have at least
// one digit in common
int longestSubarray(int a[], int n)
{
    // remembers the occurrence of digits in
    // i-th index number
    int hash[n][10];
    memset(hash, 0, sizeof(hash));
 
    // marks the presence of digit in i-th
    // index number
    for (int i = 0; i < n; i++) {
        int num = a[i];
        while (num) {
            // marks the digit
            hash[i][num % 10] = 1;
            num /= 10;
        }
    }
 
    // counts the longest Subarray
    int longest = INT_MIN;
    // counts the subarray
    int count = 0;
 
    // check for all adjacent elements
    for (int i = 0; i < n - 1; i++) {
        int j;
        for (j = 0; j < 10; j++) {
 
            // if adjacent elements have digit j
            // in them count and break as we have
            // got at-least one digit
            if (hash[i][j] and hash[i + 1][j]) {
                count++;
                break;
            }
        }
        // if no digits are common
        if (j == 10) {
            longest = max(longest, count + 1);
            count = 0;
        }
    }
 
    longest = max(longest, count + 1);
 
    // returns the length of the longest subarray
    return longest;
}
// Driver Code
int main()
{
    int a[] = { 11, 22, 33, 44, 54, 56, 63 };
 
    int n = sizeof(a) / sizeof(a[0]);
    // function call
    cout << longestSubarray(a, n);
    return 0;
}

Java

// Java program to print the length of the
// longest subarray such that adjacent elements
// of the subarray have at least one digit in
// common.
 
class GFG {
 
// function to print the longest subarray
// such that adjacent elements have at least
// one digit in common
    static int longestSubarray(int a[], int n) {
        // remembers the occurrence of digits in
        // i-th index number
        int hash[][] = new int[n][10];
 
        // marks the presence of digit in i-th
        // index number
        for (int i = 0; i < n; i++) {
            int num = a[i];
            while (num != 0) {
                // marks the digit
                hash[i][num % 10] = 1;
                num /= 10;
            }
        }
 
        // counts the longest Subarray
        int longest = Integer.MIN_VALUE;
        // counts the subarray
        int count = 0;
 
        // check for all adjacent elements
        for (int i = 0; i < n - 1; i++) {
            int j;
            for (j = 0; j < 10; j++) {
 
                // if adjacent elements have digit j
                // in them count and break as we have
                // got at-least one digit
                if (hash[i][j] == 1 & hash[i + 1][j] == 1) {
                    count++;
                    break;
                }
            }
            // if no digits are common
            if (j == 10) {
                longest = Math.max(longest, count + 1);
                count = 0;
            }
        }
 
        longest = Math.max(longest, count + 1);
 
        // returns the length of the longest subarray
        return longest;
    }
// Driver Code
 
    public static void main(String[] args) {
        int a[] = {11, 22, 33, 44, 54, 56, 63};
 
        int n = a.length;
        // function call
        System.out.println(longestSubarray(a, n));
 
    }
}
 
// This code is contributed by 29AjayKumar

Python3

# Python 3 program to print the length of the
# longest subarray such that adjacent elements
# of the subarray have at least one digit in
# common.
import sys
 
# function to print the longest subarray
# such that adjacent elements have at least
# one digit in common
def longestSubarray(a, n):
     
    # remembers the occurrence of digits
    # in i-th index number
    hash = [[0 for i in range(10)]
               for j in range(n)]
 
    # marks the presence of digit in
    # i-th index number
    for i in range(n):
        num = a[i]
        while (num):
             
            # marks the digit
            hash[i][num % 10] = 1
            num = int(num / 10)
     
    # counts the longest Subarray
    longest = -sys.maxsize-1
     
    # counts the subarray
    count = 0
 
    # check for all adjacent elements
    for i in range(n - 1):
        for j in range(10):
             
            # if adjacent elements have digit j
            # in them count and break as we have
            # got at-least one digit
            if (hash[i][j] and hash[i + 1][j]):
                count += 1
                break
         
        # if no digits are common
        if (j == 10):
            longest = max(longest, count + 1)
            count = 0
     
    longest = max(longest, count + 1)
 
    # returns the length of the longest
    # subarray
    return longest
 
# Driver Code
if __name__ == '__main__':
    a = [11, 22, 33, 44, 54, 56, 63]
 
    n = len(a)
     
    # function call
    print(longestSubarray(a, n))
     
# This code is contributed by
# Sanjit_Prasad

C#

     
// C# program to print the length of the
// longest subarray such that adjacent elements
// of the subarray have at least one digit in
// common.
using System;
public class GFG {
 
// function to print the longest subarray
// such that adjacent elements have at least
// one digit in common
    static int longestSubarray(int []a, int n) {
        // remembers the occurrence of digits in
        // i-th index number
        int [,]hash = new int[n,10];
 
        // marks the presence of digit in i-th
        // index number
        for (int i = 0; i < n; i++) {
            int num = a[i];
            while (num != 0) {
                // marks the digit
                hash[i,num % 10] = 1;
                num /= 10;
            }
        }
 
        // counts the longest Subarray
        int longest = int.MinValue;
        // counts the subarray
        int count = 0;
 
        // check for all adjacent elements
        for (int i = 0; i < n - 1; i++) {
            int j;
            for (j = 0; j < 10; j++) {
 
                // if adjacent elements have digit j
                // in them count and break as we have
                // got at-least one digit
                if (hash[i,j] == 1 & hash[i + 1,j] == 1) {
                    count++;
                    break;
                }
            }
            // if no digits are common
            if (j == 10) {
                longest = Math.Max(longest, count + 1);
                count = 0;
            }
        }
 
        longest = Math.Max(longest, count + 1);
 
        // returns the length of the longest subarray
        return longest;
    }
// Driver Code
 
    public static void Main() {
        int []a = {11, 22, 33, 44, 54, 56, 63};
 
        int n = a.Length;
        // function call
        Console.Write(longestSubarray(a, n));
 
    }
}
// This code is contributed by Rajput-Ji//

PHP

<?php
// PHP program to print the length of the
// longest subarray such that adjacent
// elements of the subarray have at least
// one digit in common.
 
// function to print the longest subarray
// such that adjacent elements have at
// least one digit in common
function longestSubarray(&$a, $n)
{
    // remembers the occurrence of
    // digits in i-th index number
    $hash = array_fill(0, $n,
            array_fill(0, 10, NULL));
 
    // marks the presence of digit in
    // i-th index number
    for ($i = 0; $i < $n; $i++)
    {
        $num = $a[$i];
        while ($num)
        {
            // marks the digit
            $hash[$i][$num % 10] = 1;
            $num = intval($num / 10);
        }
    }
 
    // counts the longest Subarray
    $longest = PHP_INT_MIN;
     
    // counts the subarray
    $count = 0;
 
    // check for all adjacent elements
    for ($i = 0; $i < $n - 1; $i++)
    {
        for ($j = 0; $j < 10; $j++)
        {
 
            // if adjacent elements have digit j
            // in them count and break as we have
            // got at-least one digit
            if ($hash[$i][$j] and $hash[$i + 1][$j])
            {
                $count++;
                break;
            }
        }
         
        // if no digits are common
        if ($j == 10)
        {
            $longest = max($longest, $count + 1);
            $count = 0;
        }
    }
 
    $longest = max($longest, $count + 1);
 
    // returns the length of the
    // longest subarray
    return $longest;
}
 
// Driver Code
$a = array(11, 22, 33, 44, 54, 56, 63 );
 
$n = sizeof($a);
 
// function call
echo longestSubarray($a, $n);
 
// This code is contributed by ChitraNayal
?>

Javascript

<script>
 
// Javascript program to print the length of the
// longest subarray such that adjacent elements
// of the subarray have at least one digit in
// common.
     
    // function to print the longest subarray
// such that adjacent elements have at least
// one digit in common
    function longestSubarray(a,n)
    {
        // remembers the occurrence of digits in
        // i-th index number
        let hash = new Array(n);
        for(let i=0;i<n;i++)
        {
            hash[i]=new Array(10);
            for(let j=0;j<10;j++)
            {
                hash[i][j]=0;
            }
        }
   
        // marks the presence of digit in i-th
        // index number
        for (let i = 0; i < n; i++) {
            let num = a[i];
            while (num != 0) {
                // marks the digit
                hash[i][num % 10] = 1;
                num = Math.floor(num/ 10);
            }
        }
   
        // counts the longest Subarray
        let longest = Number.MIN_VALUE;
        // counts the subarray
        let count = 0;
   
        // check for all adjacent elements
        for (let i = 0; i < n - 1; i++) {
            let j;
            for (j = 0; j < 10; j++) {
   
                // if adjacent elements have digit j
                // in them count and break as we have
                // got at-least one digit
                if (hash[i][j] == 1 & hash[i + 1][j] == 1) {
                    count++;
                    break;
                }
            }
            // if no digits are common
            if (j == 10) {
                longest = Math.max(longest, count + 1);
                count = 0;
            }
        }
   
        longest = Math.max(longest, count + 1);
   
        // returns the length of the longest subarray
        return longest;
    }
     
    // Driver Code
    let a=[11, 22, 33, 44, 54, 56, 63];
    let n = a.length;
    // function call
    document.write(longestSubarray(a, n));
     
     
     
    // This code is contributed by rag2127
</script>

Producción:

4

Complejidad de tiempo: O(n*10)
Subarreglo más largo tal que los elementos adyacentes tienen al menos un dígito común | Juego – 2
 

Publicación traducida automáticamente

Artículo escrito por gopaldave y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *