Dado un arreglo de N enteros, escriba un programa que imprima la longitud del subarreglo más largo de modo que los elementos adyacentes del subarreglo tengan al menos un dígito en común.
Ejemplos:
Input : 12 23 45 43 36 97 Output : 3 Explanation: The subarray is 45 43 36 which has 4 common in 45, 43 and 3 common in 43, 36. Input : 11 22 33 44 54 56 63 Output : 4 Explanation: Subarray is 44, 54, 56, 63
Un enfoque normal será verificar todos los subarreglos posibles. Pero la complejidad temporal será O(n 2 ).
Un enfoque eficiente será crear una array hash[n][10] que marque la aparición de dígitos en el i-ésimo número de índice. Iteramos para cada elemento y verificamos si los elementos adyacentes tienen un dígito común entre ellos. Si tienen un dígito común, mantenemos la cuenta de la longitud. Si los elementos adyacentes no tienen un dígito en común, inicializamos el conteo a cero y comenzamos a contar nuevamente para un subarreglo. Imprime el recuento máximo que se obtiene durante la iteración. Usamos una array hash para minimizar la complejidad del tiempo, ya que el número puede estar en el rango de 10 ^ 18, lo que tomará 18 iteraciones en el peor de los casos.
A continuación se muestra la ilustración del enfoque anterior:
C++
// CPP program to print the length of the // longest subarray such that adjacent elements // of the subarray have at least one digit in // common. #include <bits/stdc++.h> using namespace std; // function to print the longest subarray // such that adjacent elements have at least // one digit in common int longestSubarray(int a[], int n) { // remembers the occurrence of digits in // i-th index number int hash[n][10]; memset(hash, 0, sizeof(hash)); // marks the presence of digit in i-th // index number for (int i = 0; i < n; i++) { int num = a[i]; while (num) { // marks the digit hash[i][num % 10] = 1; num /= 10; } } // counts the longest Subarray int longest = INT_MIN; // counts the subarray int count = 0; // check for all adjacent elements for (int i = 0; i < n - 1; i++) { int j; for (j = 0; j < 10; j++) { // if adjacent elements have digit j // in them count and break as we have // got at-least one digit if (hash[i][j] and hash[i + 1][j]) { count++; break; } } // if no digits are common if (j == 10) { longest = max(longest, count + 1); count = 0; } } longest = max(longest, count + 1); // returns the length of the longest subarray return longest; } // Driver Code int main() { int a[] = { 11, 22, 33, 44, 54, 56, 63 }; int n = sizeof(a) / sizeof(a[0]); // function call cout << longestSubarray(a, n); return 0; }
Java
// Java program to print the length of the // longest subarray such that adjacent elements // of the subarray have at least one digit in // common. class GFG { // function to print the longest subarray // such that adjacent elements have at least // one digit in common static int longestSubarray(int a[], int n) { // remembers the occurrence of digits in // i-th index number int hash[][] = new int[n][10]; // marks the presence of digit in i-th // index number for (int i = 0; i < n; i++) { int num = a[i]; while (num != 0) { // marks the digit hash[i][num % 10] = 1; num /= 10; } } // counts the longest Subarray int longest = Integer.MIN_VALUE; // counts the subarray int count = 0; // check for all adjacent elements for (int i = 0; i < n - 1; i++) { int j; for (j = 0; j < 10; j++) { // if adjacent elements have digit j // in them count and break as we have // got at-least one digit if (hash[i][j] == 1 & hash[i + 1][j] == 1) { count++; break; } } // if no digits are common if (j == 10) { longest = Math.max(longest, count + 1); count = 0; } } longest = Math.max(longest, count + 1); // returns the length of the longest subarray return longest; } // Driver Code public static void main(String[] args) { int a[] = {11, 22, 33, 44, 54, 56, 63}; int n = a.length; // function call System.out.println(longestSubarray(a, n)); } } // This code is contributed by 29AjayKumar
Python3
# Python 3 program to print the length of the # longest subarray such that adjacent elements # of the subarray have at least one digit in # common. import sys # function to print the longest subarray # such that adjacent elements have at least # one digit in common def longestSubarray(a, n): # remembers the occurrence of digits # in i-th index number hash = [[0 for i in range(10)] for j in range(n)] # marks the presence of digit in # i-th index number for i in range(n): num = a[i] while (num): # marks the digit hash[i][num % 10] = 1 num = int(num / 10) # counts the longest Subarray longest = -sys.maxsize-1 # counts the subarray count = 0 # check for all adjacent elements for i in range(n - 1): for j in range(10): # if adjacent elements have digit j # in them count and break as we have # got at-least one digit if (hash[i][j] and hash[i + 1][j]): count += 1 break # if no digits are common if (j == 10): longest = max(longest, count + 1) count = 0 longest = max(longest, count + 1) # returns the length of the longest # subarray return longest # Driver Code if __name__ == '__main__': a = [11, 22, 33, 44, 54, 56, 63] n = len(a) # function call print(longestSubarray(a, n)) # This code is contributed by # Sanjit_Prasad
C#
// C# program to print the length of the // longest subarray such that adjacent elements // of the subarray have at least one digit in // common. using System; public class GFG { // function to print the longest subarray // such that adjacent elements have at least // one digit in common static int longestSubarray(int []a, int n) { // remembers the occurrence of digits in // i-th index number int [,]hash = new int[n,10]; // marks the presence of digit in i-th // index number for (int i = 0; i < n; i++) { int num = a[i]; while (num != 0) { // marks the digit hash[i,num % 10] = 1; num /= 10; } } // counts the longest Subarray int longest = int.MinValue; // counts the subarray int count = 0; // check for all adjacent elements for (int i = 0; i < n - 1; i++) { int j; for (j = 0; j < 10; j++) { // if adjacent elements have digit j // in them count and break as we have // got at-least one digit if (hash[i,j] == 1 & hash[i + 1,j] == 1) { count++; break; } } // if no digits are common if (j == 10) { longest = Math.Max(longest, count + 1); count = 0; } } longest = Math.Max(longest, count + 1); // returns the length of the longest subarray return longest; } // Driver Code public static void Main() { int []a = {11, 22, 33, 44, 54, 56, 63}; int n = a.Length; // function call Console.Write(longestSubarray(a, n)); } } // This code is contributed by Rajput-Ji//
PHP
<?php // PHP program to print the length of the // longest subarray such that adjacent // elements of the subarray have at least // one digit in common. // function to print the longest subarray // such that adjacent elements have at // least one digit in common function longestSubarray(&$a, $n) { // remembers the occurrence of // digits in i-th index number $hash = array_fill(0, $n, array_fill(0, 10, NULL)); // marks the presence of digit in // i-th index number for ($i = 0; $i < $n; $i++) { $num = $a[$i]; while ($num) { // marks the digit $hash[$i][$num % 10] = 1; $num = intval($num / 10); } } // counts the longest Subarray $longest = PHP_INT_MIN; // counts the subarray $count = 0; // check for all adjacent elements for ($i = 0; $i < $n - 1; $i++) { for ($j = 0; $j < 10; $j++) { // if adjacent elements have digit j // in them count and break as we have // got at-least one digit if ($hash[$i][$j] and $hash[$i + 1][$j]) { $count++; break; } } // if no digits are common if ($j == 10) { $longest = max($longest, $count + 1); $count = 0; } } $longest = max($longest, $count + 1); // returns the length of the // longest subarray return $longest; } // Driver Code $a = array(11, 22, 33, 44, 54, 56, 63 ); $n = sizeof($a); // function call echo longestSubarray($a, $n); // This code is contributed by ChitraNayal ?>
Javascript
<script> // Javascript program to print the length of the // longest subarray such that adjacent elements // of the subarray have at least one digit in // common. // function to print the longest subarray // such that adjacent elements have at least // one digit in common function longestSubarray(a,n) { // remembers the occurrence of digits in // i-th index number let hash = new Array(n); for(let i=0;i<n;i++) { hash[i]=new Array(10); for(let j=0;j<10;j++) { hash[i][j]=0; } } // marks the presence of digit in i-th // index number for (let i = 0; i < n; i++) { let num = a[i]; while (num != 0) { // marks the digit hash[i][num % 10] = 1; num = Math.floor(num/ 10); } } // counts the longest Subarray let longest = Number.MIN_VALUE; // counts the subarray let count = 0; // check for all adjacent elements for (let i = 0; i < n - 1; i++) { let j; for (j = 0; j < 10; j++) { // if adjacent elements have digit j // in them count and break as we have // got at-least one digit if (hash[i][j] == 1 & hash[i + 1][j] == 1) { count++; break; } } // if no digits are common if (j == 10) { longest = Math.max(longest, count + 1); count = 0; } } longest = Math.max(longest, count + 1); // returns the length of the longest subarray return longest; } // Driver Code let a=[11, 22, 33, 44, 54, 56, 63]; let n = a.length; // function call document.write(longestSubarray(a, n)); // This code is contributed by rag2127 </script>
Producción:
4
Complejidad de tiempo: O(n*10)
Subarreglo más largo tal que los elementos adyacentes tienen al menos un dígito común | Juego – 2