Dada una array y un entero K. Necesitamos encontrar el máximo de cada segmento de longitud K que no tenga duplicados en ese segmento.
Ejemplos:
Input : a[] = {1, 2, 2, 3, 3}, K = 3. Output : 1 3 2 For segment (1, 2, 2), Maximum = 1. For segment (2, 2, 3), Maximum = 3. For segment (2, 3, 3), Maximum = 2. Input : a[] = {3, 3, 3, 4, 4, 2}, K = 4. Output : 4 Nothing 3
Una solución simple es ejecutar dos bucles. Para cada subarreglo, encuentre todos los elementos distintos e imprima el máximo de elementos únicos.
Una solución eficaz es utilizar la técnica de la ventana corredera . Tenemos dos estructuras en cada ventana.
- Una tabla hash para almacenar recuentos de todos los elementos en la ventana actual.
- Un BST autoequilibrado (implementado usando set en C++ STL y TreeSet en Java) . La idea es encontrar rápidamente el elemento máximo y actualizar los elementos máximos.
Procesamos los primeros elementos K-1 y almacenamos sus recuentos en la tabla hash. También almacenamos elementos únicos insertados. Ahora, uno por uno, procesamos el último elemento de cada ventana. Si el elemento actual es único, lo agregamos al conjunto. También aumentamos su conteo. Después de procesar el último elemento, imprimimos el máximo del conjunto. Antes de comenzar la siguiente iteración, eliminamos el primer elemento de la ventana anterior.
Implementación:
C++
// C++ code to calculate maximum unique // element of every segment of array #include <bits/stdc++.h> using namespace std; void find_max(int A[], int N, int K) { // Storing counts of first K-1 elements // Also storing distinct elements. map<int, int> Count; for (int i = 0; i < K - 1; i++) Count[A[i]]++; set<int> Myset; for (auto x : Count) if (x.second == 1) Myset.insert(x.first); // Before every iteration of this loop, // we maintain that K-1 elements of current // window are processed. for (int i = K - 1; i < N; i++) { // Process K-th element of current window Count[A[i]]++; if (Count[A[i]] == 1) Myset.insert(A[i]); else Myset.erase(A[i]); // If there are no distinct // elements in current window if (Myset.size() == 0) printf("Nothing\n"); // Set is ordered and last element // of set gives us maximum element. else printf("%d\n", *Myset.rbegin()); // Remove first element of current // window before next iteration. int x = A[i - K + 1]; Count[x]--; if (Count[x] == 1) Myset.insert(x); if (Count[x] == 0) Myset.erase(x); } } // Driver code int main() { int a[] = { 1, 2, 2, 3, 3 }; int n = sizeof(a) / sizeof(a[0]); int k = 3; find_max(a, n, k); return 0; }
Java
// Java code to calculate maximum unique // element of every segment of array import java.io.*; import java.util.*; class GFG { static void find_max(int[] A, int N, int K) { // Storing counts of first K-1 elements // Also storing distinct elements. HashMap<Integer, Integer> Count = new HashMap<>(); for (int i = 0; i < K - 1; i++) if (Count.containsKey(A[i])) Count.put(A[i], 1 + Count.get(A[i])); else Count.put(A[i], 1); TreeSet<Integer> Myset = new TreeSet<Integer>(); for (Map.Entry x : Count.entrySet()) { if (Integer.parseInt(String.valueOf(x.getValue())) == 1) Myset.add(Integer.parseInt(String.valueOf(x.getKey()))); } // Before every iteration of this loop, // we maintain that K-1 elements of current // window are processed. for (int i = K - 1; i < N; i++) { // Process K-th element of current window if (Count.containsKey(A[i])) Count.put(A[i], 1 + Count.get(A[i])); else Count.put(A[i], 1); if (Integer.parseInt(String.valueOf(Count.get(A[i]))) == 1) Myset.add(A[i]); else Myset.remove(A[i]); // If there are no distinct // elements in current window if (Myset.size() == 0) System.out.println("Nothing"); // Set is ordered and last element // of set gives us maximum element. else System.out.println(Myset.last()); // Remove first element of current // window before next iteration. int x = A[i - K + 1]; Count.put(x, Count.get(x) - 1); if (Integer.parseInt(String.valueOf(Count.get(x))) == 1) Myset.add(x); if (Integer.parseInt(String.valueOf(Count.get(x))) == 0) Myset.remove(x); } } // Driver code public static void main(String args[]) { int[] a = { 1, 2, 2, 3, 3 }; int n = a.length; int k = 3; find_max(a, n, k); } } // This code is contributed by rachana soma
Python3
# Python3 code to calculate maximum unique # element of every segment of array def find_max(A, N, K): # Storing counts of first K-1 elements # Also storing distinct elements. Count = dict() for i in range(K - 1): Count[A[i]] = Count.get(A[i], 0) + 1 Myset = dict() for x in Count: if (Count[x] == 1): Myset[x] = 1 # Before every iteration of this loop, # we maintain that K-1 elements of current # window are processed. for i in range(K - 1, N): # Process K-th element of current window Count[A[i]] = Count.get(A[i], 0) + 1 if (Count[A[i]] == 1): Myset[A[i]] = 1 else: del Myset[A[i]] # If there are no distinct # elements in current window if (len(Myset) == 0): print("Nothing") # Set is ordered and last element # of set gives us maximum element. else: maxm = -10**9 for i in Myset: maxm = max(i, maxm) print(maxm) # Remove first element of current # window before next iteration. x = A[i - K + 1] if x in Count.keys(): Count[x] -= 1 if (Count[x] == 1): Myset[x] = 1 if (Count[x] == 0): del Myset[x] # Driver code a = [1, 2, 2, 3, 3 ] n = len(a) k = 3 find_max(a, n, k) # This code is contributed # by mohit kumar
C#
using System; using System.Collections.Generic; public class GFG { static void find_max(int[] A, int N, int K) { // Storing counts of first K-1 elements // Also storing distinct elements. Dictionary<int, int> count = new Dictionary<int, int>(); for (int i = 0; i < K - 1; i++) { if(count.ContainsKey(A[i])) { count[A[i]]++; } else { count.Add(A[i], 1); } } HashSet<int> Myset = new HashSet<int>(); foreach(KeyValuePair<int, int> x in count) { if(x.Value == 1) { Myset.Add(x.Key); } } // Before every iteration of this loop, // we maintain that K-1 elements of current // window are processed. for (int i = K - 1; i < N; i++) { // Process K-th element of current window if (count.ContainsKey(A[i])) { count[A[i]]++; } else { count.Add(A[i], 1); } if(count[A[i]] == 1) { Myset.Add(A[i]); } else { Myset.Remove(A[i]); } // If there are no distinct // elements in current window if (Myset.Count == 0) Console.Write("Nothing\n"); // Set is ordered and last element // of set gives us maximum element. else { List<int> myset = new List<int>(Myset); Console.WriteLine(myset[myset.Count - 1]); } // Remove first element of current // window before next iteration. int x = A[i - K + 1]; count[x]--; if(count[x] == 1) { Myset.Add(x); } if(count[x] == 0) { Myset.Remove(x); } } } // Driver code static public void Main () { int[] a = { 1, 2, 2, 3, 3 }; int n=a.Length; int k = 3; find_max(a, n, k); } } // This code is contributed by rag2127
Javascript
<script> // Javascript code to calculate maximum unique // element of every segment of array function find_max(A,N,K) { // Storing counts of first K-1 elements // Also storing distinct elements. let Count = new Map(); for (let i = 0; i < K - 1; i++) if (Count.has(A[i])) Count.set(A[i], 1 + Count.get(A[i])); else Count.set(A[i], 1); let Myset = new Set(); for (let [key, value] of Count.entries()) { if (value==1) Myset.add(key); } // Before every iteration of this loop, // we maintain that K-1 elements of current // window are processed. for (let i = K - 1; i < N; i++) { // Process K-th element of current window if (Count.has(A[i])) Count.set(A[i], 1 + Count.get(A[i])); else Count.set(A[i], 1); if ((Count.get(A[i])) == 1) Myset.add(A[i]); else Myset.delete(A[i]); // If there are no distinct // elements in current window if (Myset.size == 0) document.write("Nothing<br>"); // Set is ordered and last element // of set gives us maximum element. else document.write(Array.from(Myset)[Myset.size-1]+"<br>"); // Remove first element of current // window before next iteration. let x = A[i - K + 1]; Count.set(x, Count.get(x) - 1); if (Count.get(x) == 1) Myset.add(x); if (Count.get(x) == 0) Myset.delete(x); } } // Driver code let a=[1, 2, 2, 3, 3]; let n = a.length; let k = 3; find_max(a, n, k); // This code is contributed by unknown2108 </script>
1 3 2
Complejidad de tiempo: O(N Log K)
Publicación traducida automáticamente
Artículo escrito por Harsha_Mogali y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA