Se da una array de longitud n, y necesitamos calcular el siguiente elemento mayor para cada elemento de la array dada. Si el siguiente elemento mayor no está disponible en la array dada, entonces debemos completar ‘_’ en ese lugar de índice.
Ejemplos:
Input : 6 3 9 8 10 2 1 15 7 Output : 7 6 10 9 15 3 2 _ 8 Here every element of array has next greater element but at index 7, 15 is the greatest element of given array and no other element is greater from 15 so at the index of 15 we fill with '_' . Input : 13 6 7 12 Output : _ 7 12 13 Here, at index 0, 13 is the greatest value in given array and no other array element is greater from 13 so at index 0 we fill '_'.
Preguntado en : Zoho
Una solución simple es usar dos bucles anidados. El ciclo externo selecciona todos los elementos uno por uno y el ciclo interno encuentra el siguiente elemento mayor mediante una búsqueda lineal de principio a fin.
C++
// Simple C++ program to find smallest greater element in // whole array for every element. #include <bits/stdc++.h> using namespace std; void smallestGreater(int arr[], int n) { for (int i = 0; i < n; i++) { // Find the closest greater element for arr[j] in // the entire array. int diff = INT_MAX, closest = -1; for (int j = 0; j < n; j++) { if (arr[i] < arr[j] && arr[j] - arr[i] < diff) { diff = arr[j] - arr[i]; closest = j; } } // Check if arr[i] is largest (closest == -1) ? cout << "_ " : cout << arr[closest] << " "; } } // Driver code int main() { int ar[] = { 6, 3, 9, 8, 10, 2, 1, 15, 7 }; int n = sizeof(ar) / sizeof(ar[0]); smallestGreater(ar, n); return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
C
// Simple C program to find smallest greater element in // whole array for every element. #include <stdio.h> #include <limits.h> void smallestGreater(int arr[], int n) { for (int i = 0; i < n; i++) { // Find the closest greater element for arr[j] in // the entire array. int diff = INT_MAX, closest = -1; for (int j = 0; j < n; j++) { if (arr[i] < arr[j] && arr[j] - arr[i] < diff) { diff = arr[j] - arr[i]; closest = j; } } // Check if arr[i] is largest (closest == -1) ? printf("_ ") : printf("%d ",arr[closest]); } } // Driver code int main() { int ar[] = { 6, 3, 9, 8, 10, 2, 1, 15, 7 }; int n = sizeof(ar) / sizeof(ar[0]); smallestGreater(ar, n); return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
Java
// Simple Java program to find smallest greater element in // whole array for every element. import java.io.*; class GFG { static void smallestGreater(int arr[], int n) { for (int i = 0; i < n; i++) { // Find the closest greater element for arr[j] // in the entire array. int diff = Integer.MAX_VALUE; int closest = -1; for (int j = 0; j < n; j++) { if (arr[i] < arr[j] && arr[j] - arr[i] < diff) { diff = arr[j] - arr[i]; closest = j; } } // Check if arr[i] is largest if (closest == -1) System.out.print("_ "); else System.out.print(arr[closest] + " "); } } // Driver code public static void main(String[] args) { int ar[] = { 6, 3, 9, 8, 10, 2, 1, 15, 7 }; int n = ar.length; smallestGreater(ar, n); } } // This code is contributed by Aditya Kumar (adityakumar129)
Python3
# Simple Python3 program to find smallest # greater element in whole array for # every element. def smallestGreater(arr, n) : for i in range(0, n) : # Find the closest greater element # for arr[j] in the entire array. diff = 1000; closest = -1; for j in range(0, n) : if ( arr[i] < arr[j] and arr[j] - arr[i] < diff) : diff = arr[j] - arr[i]; closest = j; # Check if arr[i] is largest if (closest == -1) : print ("_ ", end = ""); else : print ("{} ".format(arr[closest]), end = ""); # Driver code ar = [6, 3, 9, 8, 10, 2, 1, 15, 7]; n = len(ar) ; smallestGreater(ar, n); # This code is contributed by Manish Shaw # (manishshaw1)
C#
// Simple C# program to find // smallest greater element in // whole array for every element. using System; class GFG { static void smallestGreater(int []arr, int n) { for (int i = 0; i < n; i++) { // Find the closest greater // element for arr[j] in // the entire array. int diff = int.MaxValue; int closest = -1; for (int j = 0; j < n; j++) { if (arr[i] < arr[j] && arr[j] - arr[i] < diff) { diff = arr[j] - arr[i]; closest = j; } } // Check if arr[i] is largest if(closest == -1) Console.Write( "_ " ); else Console.Write(arr[closest] + " "); } } // Driver code public static void Main() { int []ar = {6, 3, 9, 8, 10, 2, 1, 15, 7}; int n = ar.Length; smallestGreater(ar, n); } } // This code is contributed by anuj_67.
PHP
<?php // Simple PHP program to find smallest // greater element in whole array for // every element. function smallestGreater($arr, $n) { for ( $i = 0; $i < $n; $i++) { // Find the closest greater element // for arr[j] in the entire array. $diff = PHP_INT_MAX; $closest = -1; for ( $j = 0; $j < $n; $j++) { if ( $arr[$i] < $arr[$j] && $arr[$j] - $arr[$i] < $diff) { $diff = $arr[$j] - $arr[$i]; $closest = $j; } } // Check if arr[i] is largest if ($closest == -1) echo "_ " ; else echo $arr[$closest] , " "; } } // Driver code $ar = array (6, 3, 9, 8, 10, 2, 1, 15, 7); $n = sizeof($ar) ; smallestGreater($ar, $n); // This code is contributed by ajit ?>
Javascript
<script> // Simple Javascript program to find // smallest greater element in // whole array for every element. function smallestGreater(arr, n) { for (let i = 0; i < n; i++) { // Find the closest greater // element for arr[j] in // the entire array. let diff = Number.MAX_VALUE; let closest = -1; for (let j = 0; j < n; j++) { if (arr[i] < arr[j] && arr[j] - arr[i] < diff) { diff = arr[j] - arr[i]; closest = j; } } // Check if arr[i] is largest if(closest == -1) document.write( "_ " ); else document.write(arr[closest] + " "); } } let ar = [6, 3, 9, 8, 10, 2, 1, 15, 7]; let n = ar.length; smallestGreater(ar, n); </script>
7 6 10 9 15 3 2 _ 8
Complejidad temporal: O(n*n)
Espacio auxiliar: O(1)
Una solución eficiente es insertar elementos uno por uno en un conjunto (un árbol de búsqueda binario autoequilibrado). Después de insertarlo en el conjunto, buscamos elementos. Después de encontrar el iterador del elemento buscado, movemos el iterador al siguiente (tenga en cuenta que el conjunto almacena los elementos en orden) para encontrar un elemento que sea simplemente mayor.
C++
// Efficient C++ program to find smallest // greater element in whole array for // every element. #include <bits/stdc++.h> using namespace std; void smallestGreater(int arr[], int n) { set<int> s; for (int i = 0; i < n; i++) s.insert(arr[i]); for (int i = 0; i < n; i++) { auto it = s.find(arr[i]); it++; if (it != s.end()) cout << *it << " "; else cout << "_ "; } } // Driver code int main() { int ar[] = { 6, 3, 9, 8, 10, 2, 1, 15, 7 }; int n = sizeof(ar) / sizeof(ar[0]); smallestGreater(ar, n); return 0; }
Java
// Efficient Java program to // find smallest greater element // in whole array for every element. import java.util.*; class GFG{ static void smallestGreater(int arr[], int n) { HashSet<Integer> s = new HashSet<>(); for (int i = 0; i < n; i++) s.add(arr[i]); Vector<Integer> newAr = new Vector<>(); for (int p : s) { newAr.add(p); } for (int i = 0; i < n; i++) { int temp = lowerBound(newAr, 0, newAr.size(), arr[i]); if (temp < n) System.out.print(newAr.get(temp) + " "); else System.out.print("_ "); } } static int lowerBound(Vector<Integer> vec, int low, int high, int element) { int[] array = new int[vec.size()]; int k = 0; for (Integer val : vec) { array[k] = val; k++; } // vec.clear(); while (low < high) { int middle = low + (high - low) / 2; if (element > array[middle]) { low = middle + 1; } else { high = middle; } } return low+1; } // Driver code public static void main(String[] args) { int ar[] = {6, 3, 9, 8, 10, 2, 1, 15, 7}; int n = ar.length; smallestGreater(ar, n); } } // This code is contributed by gauravrajput1
Python3
# Efficient Python3 program to # find smallest greater element # in whole array for every element def smallestGreater(arr, n): s = set() for i in range(n): s.add(arr[i]) newAr = [] for p in s: newAr.append(p) for i in range(n): temp = lowerBound(newAr, 0, len(newAr), arr[i]) if (temp < n): print(newAr[temp], end = " ") else: print("_ ", end = "") def lowerBound(vec, low, high, element): array = [0] * (len(vec)) k = 0 for val in vec: array[k] = val k += 1 # vec.clear(); while (low < high): middle = low + int((high - low) / 2) if (element > array[middle]): low = middle + 1 else: high = middle return low + 1 # Driver code if __name__ == '__main__': ar = [ 6, 3, 9, 8, 10, 2, 1, 15, 7 ] n = len(ar) smallestGreater(ar, n) # This code is contributed by shikhasingrajput
C#
// Efficient C# program to // find smallest greater element // in whole array for every element. using System; using System.Collections.Generic; class GFG{ static void smallestGreater(int[] arr, int n) { HashSet<int> s = new HashSet<int>(); for (int i = 0; i < n; i++) { s.Add(arr[i]); } int[] newAr = new int[s.Count]; int j = 0; foreach(int p in s) { newAr[j] = p; j++; } Array.Sort(newAr); for (int i = 0; i < n; i++) { int temp = lowerBound(newAr, 0, newAr.GetLength(0), arr[i]); if (temp < n) Console.Write(newAr[temp] + " "); else Console.Write("_ "); } } static int lowerBound(int[] array, int low, int high, int element) { while (low < high) { int middle = low + (high - low) / 2; if (element > array[middle]) { low = middle + 1; } else { high = middle; } } return low + 1; } // Driver code public static void Main(String[] args) { int[] ar = {6, 3, 9, 8, 10, 2, 1, 15, 7}; int n = ar.Length; smallestGreater(ar, n); } } // This code is contributed by 29AjayKumar
Javascript
<script> // Efficient Javascript program to // find smallest greater element // in whole array for every element. function smallestGreater(arr,n) { let s = new Set(); for (let i = 0; i < n; i++) s.add(arr[i]); let newAr = []; for (let p of s.values()) { newAr.push(p); } newAr.sort(function(a,b){return a-b;}); for (let i = 0; i < n; i++) { let temp = lowerBound(newAr, 0, newAr.length, arr[i]); if(temp < n) document.write(newAr[temp] + " "); else document.write("_ "); } } function lowerBound(vec,low,high,element) { let array = [...vec]; // vec.clear(); while (low < high) { let middle = Math.floor(low + (high - low) / 2); if (element > array[middle]) { low = middle + 1; } else { high = middle; } } return low+1; } // Driver code let ar=[6, 3, 9, 8, 10, 2, 1, 15, 7]; let n = ar.length; smallestGreater(ar, n); // This code is contributed by patel2127 </script>
7 6 10 9 15 3 2 _ 8
Complejidad Temporal: O(n Log n). Tenga en cuenta que las operaciones de inserción del árbol de búsqueda autoequilibrado (implementado por set en C++) tardan O(Log n) en insertarse y buscarse.
Espacio Auxiliar: O(n)
También podemos usar la ordenación seguida de búsquedas binarias para resolver el problema anterior al mismo tiempo y en el mismo espacio auxiliar.
Publicación traducida automáticamente
Artículo escrito por aditya1011 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA