Dada una pila con operaciones push(), pop(), vacío(), elimine la mitad sin usar ninguna estructura de datos adicional.
Input : Stack[] = [1, 2, 3, 4, 5] Output : Stack[] = [1, 2, 4, 5] Input : Stack[] = [1, 2, 3, 4, 5, 6] Output : Stack[] = [1, 2, 4, 5, 6]
La idea es usar llamadas recursivas. Primero eliminamos todos los elementos uno por uno, luego recurrimos. Después de las llamadas recursivas, empujamos hacia atrás todos los elementos excepto el elemento del medio.
C++
// C++ code to delete middle of a stack // without using additional data structure. #include<bits/stdc++.h> using namespace std; // Deletes middle of stack of size // n. Curr is current item number void deleteMid_util(stack<char>&s, int sizeOfStack, int current) { //if current pointer is half of the size of stack then we //are accessing the middle element of stack. if(current==sizeOfStack/2) { s.pop(); return; } //storing the top element in a variable and popping it. int x = s.top(); s.pop(); current+=1; //calling the function recursively. deleteMid_util(s,sizeOfStack,current); //pushing the elements (except middle element) back //into stack after recursion calls. s.push(x); } void deleteMid(stack<char>&s, int sizeOfStack) { deleteMid_util(s,sizeOfStack,0); } //Driver function to test above functions int main() { stack<char> st; //push elements into the stack st.push('1'); st.push('2'); st.push('3'); st.push('4'); st.push('5'); st.push('6'); st.push('7'); deleteMid(st, st.size()); // Printing stack after deletion // of middle. while (!st.empty()) { char p=st.top(); st.pop(); cout << p << " "; } return 0; }
Java
// Java code to delete middle of a stack // without using additional data structure. import java.io.*; import java.util.*; public class GFG { // Deletes middle of stack of size // n. Curr is current item number static void deleteMid(Stack<Character> st, int n, int curr) { // If stack is empty or all items // are traversed if (st.empty() || curr == n) return; // Remove current item char x = st.pop(); // Remove other items deleteMid(st, n, curr+1); // Put all items back except middle if (curr != n/2) st.push(x); } // Driver function to test above functions public static void main(String args[]) { Stack<Character> st = new Stack<Character>(); // push elements into the stack st.push('1'); st.push('2'); st.push('3'); st.push('4'); st.push('5'); st.push('6'); st.push('7'); deleteMid(st, st.size(), 0); // Printing stack after deletion // of middle. while (!st.empty()) { char p=st.pop(); System.out.print(p + " "); } } } // This code is contributed by // Manish Shaw (manishshaw1)
Python3
# Python3 code to delete middle of a stack # without using additional data structure. # Deletes middle of stack of size # n. Curr is current item number class Stack: def __init__(self): self.items = [] def isEmpty(self): return self.items == [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): return self.items[len(self.items)-1] def size(self): return len(self.items) def deleteMid(st, n, curr) : # If stack is empty or all items # are traversed if (st.isEmpty() or curr == n) : return # Remove current item x = st.peek() st.pop() # Remove other items deleteMid(st, n, curr+1) # Put all items back except middle if (curr != int(n/2)) : st.push(x) # Driver function to test above functions st = Stack() # push elements into the stack st.push('1') st.push('2') st.push('3') st.push('4') st.push('5') st.push('6') st.push('7') deleteMid(st, st.size(), 0) # Printing stack after deletion # of middle. while (st.isEmpty() == False) : p = st.peek() st.pop() print (str(p) + " ", end="") # This code is contributed by # Manish Shaw (manishshaw1)
C#
// C# code to delete middle of a stack // without using additional data structure. using System; using System.Collections.Generic; class GFG { // Deletes middle of stack of size // n. Curr is current item number static void deleteMid(Stack<char> st, int n, int curr = 0) { // If stack is empty or all // items are traversed if (st.Count == 0 || curr == n) return; // Remove current item char x = st.Peek(); st.Pop(); // Remove other items deleteMid(st, n, curr+1); // Put all items // back except middle if (curr != n / 2) st.Push(x); } // Driver Code public static void Main() { Stack<char> st = new Stack<char>(); // push elements into the stack st.Push('1'); st.Push('2'); st.Push('3'); st.Push('4'); st.Push('5'); st.Push('6'); st.Push('7'); deleteMid(st, st.Count); // Printing stack after // deletion of middle. while (st.Count != 0) { char p=st.Peek(); st.Pop(); Console.Write(p + " "); } } } // This code is contributed by // Manish Shaw (manishshaw1)
Javascript
<script> // Javascript code to delete middle of a stack // without using additional data structure. // Deletes middle of stack of size // n. Curr is current item number function deleteMid(st, n, curr) { // If stack is empty or all items // are traversed if (st.length == 0 || curr == n) return; // Remove current item let x = st[st.length - 1]; st.pop(); // Remove other items deleteMid(st, n, curr+1); // Put all items back except middle if (curr != parseInt(n/2, 10)) st.push(x); } let st = []; // push elements into the stack st.push('1'); st.push('2'); st.push('3'); st.push('4'); st.push('5'); st.push('6'); st.push('7'); deleteMid(st, st.length, 0); // Printing stack after deletion // of middle. while (st.length > 0) { let p = st[st.length - 1]; st.pop(); document.write(p + " "); } // This code is contributed by suresh07. </script>
Producción
7 6 5 3 2 1
Método – 2 (Solución Iterativa)
En la solución anterior, habíamos utilizado el método de recursión, pero también podemos hacerlo mediante el método iterativo.
C++
// C++ code to delete middle of a stack with iterative method #include <bits/stdc++.h> using namespace std; // Deletes middle of stack of size n. Curr is current item number void deleteMid(stack<char>& st) { int n = st.size(); stack<char> tempSt; int count = 0; // put first n/2 element of st in tempSt while (count < n / 2) { char c = st.top(); st.pop(); tempSt.push(c); count++; } // delete middle element st.pop(); // put all (n/2) element of tempSt in st while (!tempSt.empty()) { st.push(tempSt.top()); tempSt.pop(); } } // Driver function to test above functions int main() { stack<char> st; // push elements into the stack st.push('1'); st.push('2'); st.push('3'); st.push('4'); st.push('5'); st.push('6'); st.push('7'); deleteMid(st); // Printing stack after deletion of middle. while (!st.empty()) { char p = st.top(); st.pop(); cout << p << " "; } return 0; }
Java
// Java code to delete middle of a stack with iterative // method import java.util.Stack; @SuppressWarnings("unchecked") class Rextester { // Deletes middle of stack of size n. Curr is current // item number static void deleteMid(Stack<Character> st) { int n = st.size(); Stack<Character> tempSt = new Stack(); int count = 0; // put first n/2 element of st in tempSt while (count < n / 2) { char c = st.peek(); st.pop(); tempSt.push(c); count++; } // delete middle element st.pop(); // put all (n/2) element of tempSt in st while (!tempSt.empty()) { st.push(tempSt.peek()); tempSt.pop(); } } // Driver function to test above functions public static void main(String args[]) { Stack<Character> st = new Stack(); // push elements into the stack st.push('1'); st.push('2'); st.push('3'); st.push('4'); st.push('5'); st.push('6'); st.push('7'); deleteMid(st); // Printing stack after deletion of middle. while (!st.empty()) { char p = st.peek(); st.pop(); System.out.print(p + " "); } } } // This code is contributed by Lovely Jain
Producción
7 6 5 3 2 1
Publicación traducida automáticamente
Artículo escrito por Rohit_ranjan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA