Dada una array de n enteros únicos donde cada elemento de la array está en el rango [1, n]. La array tiene todos los elementos distintos y el tamaño de una array es (n-2). Por lo tanto, faltan dos números del rango en esta array. Encuentra los dos números que faltan.
Ejemplos:
Input : arr[] = {1, 3, 5, 6}, n = 6 Output : 2 4 Input : arr[] = {1, 2, 4}, n = 5 Output : 3 5 Input : arr[] = {1, 2}, n = 4 Output : 3 4
Encuentra dos números que faltan | Conjunto 1 (una solución de tiempo lineal interesante)
Hemos discutido dos métodos para resolver este problema en el artículo anterior. El método 1 requiere O(n) espacio extra y el método 2 puede causar desbordamiento. En esta publicación, se discute una nueva solución. La solución discutida aquí es O(n) tiempo, O(1) espacio extra y no causa desbordamiento.
A continuación se muestran los pasos.
- Encuentre XOR de todos los elementos de la array y los números naturales del 1 al n. Sea la array arr[] = {1, 3, 5, 6}
XOR = (1 ^ 3 ^ 5 ^ 6) ^ (1 ^ 2 ^ 3 ^ 4 ^ 5 ^ 6)
- Según la propiedad de XOR, los mismos elementos se cancelarán y nos quedará 2 XOR 4 = 6 (110). Pero no sabemos los números exactos, sean X e Y.
- Un bit se establece en xor solo si los bits correspondientes en X e Y son diferentes. Este es el paso crucial para entender.
- Tomamos un bit establecido en XOR. Consideremos el bit establecido más a la derecha en XOR, set_bit_no = 010
- Ahora, de nuevo, si aplicamos XOR a todos los elementos de arr[] y de 1 a n que tienen el conjunto de bits más a la derecha, obtendremos uno de los números repetidos, digamos x.
Ex: Elements in arr[] with bit set: {3, 6} Elements from 1 to n with bit set {2, 3, 6} Result of XOR'ing all these is x = 2.
- De manera similar, si aplicamos XOR a todos los elementos de arr[] y de 1 a n que no tienen establecido el bit más a la derecha, obtendremos el otro elemento, digamos y.
Ex: Elements in arr[] with bit not set: {1, 5} Elements from 1 to n with bit not set {1, 4, 5} Result of XOR'ing all these is y = 4
A continuación se muestra la implementación de los pasos anteriores.
C++
// C++ Program to find 2 Missing Numbers using O(1) // extra space and no overflow. #include<bits/stdc++.h> // Function to find two missing numbers in range // [1, n]. This function assumes that size of array // is n-2 and all array elements are distinct void findTwoMissingNumbers(int arr[], int n) { /* Get the XOR of all elements in arr[] and {1, 2 .. n} */ int XOR = arr[0]; for (int i = 1; i < n-2; i++) XOR ^= arr[i]; for (int i = 1; i <= n; i++) XOR ^= i; // Now XOR has XOR of two missing elements. Any set // bit in it must be set in one missing and unset in // other missing number // Get a set bit of XOR (We get the rightmost set bit) int set_bit_no = XOR & ~(XOR-1); // Now divide elements in two sets by comparing rightmost // set bit of XOR with bit at same position in each element. int x = 0, y = 0; // Initialize missing numbers for (int i = 0; i < n-2; i++) { if (arr[i] & set_bit_no) x = x ^ arr[i]; /*XOR of first set in arr[] */ else y = y ^ arr[i]; /*XOR of second set in arr[] */ } for (int i = 1; i <= n; i++) { if (i & set_bit_no) x = x ^ i; /* XOR of first set in arr[] and {1, 2, ...n }*/ else y = y ^ i; /* XOR of second set in arr[] and {1, 2, ...n } */ } printf("Two Missing Numbers are\n %d %d", x, y); } // Driver program to test above function int main() { int arr[] = {1, 3, 5, 6}; // Range of numbers is 2 plus size of array int n = 2 + sizeof(arr)/sizeof(arr[0]); findTwoMissingNumbers(arr, n); return 0; }
Java
// Java Program to find 2 Missing Numbers import java.util.*; class GFG { // Function to find two missing numbers in range // [1, n]. This function assumes that size of array // is n-2 and all array elements are distinct static void findTwoMissingNumbers(int arr[], int n) { /* Get the XOR of all elements in arr[] and {1, 2 .. n} */ int XOR = arr[0]; for (int i = 1; i < n-2; i++) XOR ^= arr[i]; for (int i = 1; i <= n; i++) XOR ^= i; // Now XOR has XOR of two missing elements. // Any set bit in it must be set in one missing // and unset in other missing number // Get a set bit of XOR (We get the rightmost // set bit) int set_bit_no = XOR & ~(XOR-1); // Now divide elements in two sets by comparing // rightmost set bit of XOR with bit at same // position in each element. int x = 0, y = 0; // Initialize missing numbers for (int i = 0; i < n-2; i++) { if ((arr[i] & set_bit_no) > 0) /*XOR of first set in arr[] */ x = x ^ arr[i]; else /*XOR of second set in arr[] */ y = y ^ arr[i]; } for (int i = 1; i <= n; i++) { if ((i & set_bit_no)>0) /* XOR of first set in arr[] and {1, 2, ...n }*/ x = x ^ i; else /* XOR of second set in arr[] and {1, 2, ...n } */ y = y ^ i; } System.out.println("Two Missing Numbers are "); System.out.println( x + " " + y); } /* Driver program to test above function */ public static void main(String[] args) { int arr[] = {1, 3, 5, 6}; // Range of numbers is 2 plus size of array int n = 2 +arr.length; findTwoMissingNumbers(arr, n); } } // This code is contributed by Arnav Kr. Mandal.
Python3
# Python Program to find 2 Missing # Numbers using O(1) # extra space and no overflow. # Function to find two missing # numbers in range # [1, n]. This function assumes # that size of array # is n-2 and all array elements # are distinct def findTwoMissingNumbers(arr, n): # Get the XOR of all # elements in arr[] and # {1, 2 .. n} XOR = arr[0] for i in range(1,n-2): XOR ^= arr[i] for i in range(1,n+1): XOR ^= i # Now XOR has XOR of two # missing elements. Any set # bit in it must be set in # one missing and unset in # other missing number # Get a set bit of XOR # (We get the rightmost set bit) set_bit_no = XOR & ~(XOR-1) # Now divide elements in two sets # by comparing rightmost # set bit of XOR with bit at same # position in each element. x = 0 # Initialize missing numbers y = 0 for i in range(0,n-2): if arr[i] & set_bit_no: # XOR of first set in arr[] x = x ^ arr[i] else: # XOR of second set in arr[] y = y ^ arr[i] for i in range(1,n+1): if i & set_bit_no: # XOR of first set in arr[] and # {1, 2, ...n } x = x ^ i else: # XOR of second set in arr[] and # {1, 2, ...n } y = y ^ i print ("Two Missing Numbers are\n%d %d"%(x,y)) # Driver program to test # above function arr = [1, 3, 5, 6] # Range of numbers is 2 # plus size of array n = 2 + len(arr) findTwoMissingNumbers(arr, n) # This code is contributed # by Shreyanshi Arun.
C#
// Program to find 2 Missing Numbers using System; class GFG { // Function to find two missing // numbers in range [1, n].This // function assumes that size of // array is n-2 and all array // elements are distinct static void findTwoMissingNumbers(int[] arr, int n) { // Get the XOR of all elements // in arr[] and {1, 2 .. n} int XOR = arr[0]; for (int i = 1; i < n - 2; i++) XOR ^= arr[i]; for (int i = 1; i <= n; i++) XOR ^= i; // Now XOR has XOR of two missing // element. Any set bit in it must // be set in one missing and unset // in other missing number // Get a set bit of XOR (We get the // rightmost set bit) int set_bit_no = XOR & ~(XOR - 1); // Now divide elements in two sets // by comparing rightmost set bit // of XOR with bit at same position // in each element. int x = 0, y = 0; // Initialize missing numbers for (int i = 0; i < n - 2; i++) { if ((arr[i] & set_bit_no) > 0) // XOR of first set in arr[] x = x ^ arr[i]; else // XOR of second set in arr[] y = y ^ arr[i]; } for (int i = 1; i <= n; i++) { if ((i & set_bit_no) > 0) // XOR of first set in arr[] // and {1, 2, ...n } x = x ^ i; else // XOR of second set in arr[] // and {1, 2, ...n } y = y ^ i; } Console.WriteLine("Two Missing Numbers are "); Console.WriteLine(x + " " + y); } // Driver program public static void Main() { int[] arr = { 1, 3, 5, 6 }; // Range of numbers is 2 plus // size of array int n = 2 + arr.Length; findTwoMissingNumbers(arr, n); } } // This code is contributed by Anant Agarwal.
PHP
<?php // PHP Program to find 2 Missing // Numbers using O(1) extra // space and no overflow. // Function to find two // missing numbers in range // [1, n]. This function // assumes that size of array // is n-2 and all array // elements are distinct function findTwoMissingNumbers($arr, $n) { // Get the XOR of all // elements in arr[] and // {1, 2 .. n} $XOR = $arr[0]; for ($i = 1; $i < $n - 2; $i++) $XOR ^= $arr[$i]; for ($i = 1; $i <= $n; $i++) $XOR ^= $i; // Now XOR has XOR of two // missing elements. Any set // bit in it must be set in // one missing and unset in // other missing number // Get a set bit of XOR // (We get the rightmost // set bit) $set_bit_no = $XOR & ~($XOR - 1); // Now divide elements in two // sets by comparing rightmost // set bit of XOR with bit at // same position in each element. $x = 0; // Initialize missing numbers $y = 0; for ($i = 0; $i < $n - 2; $i++) { if ($arr[$i] & $set_bit_no) // XOR of first set in arr[] $x = $x ^ $arr[$i]; else // XOR of second set in arr[] $y = $y ^ $arr[$i]; } for ($i = 1; $i <= $n; $i++) { if ($i & $set_bit_no) // XOR of first set in arr[] // and {1, 2, ...n } $x = $x ^ $i; else // XOR of second set in arr[] // and {1, 2, ...n } $y = $y ^ $i; } echo "Two Missing Numbers are\n", $x; echo "\n", $y; } // Driver Code $arr = array(1, 3, 5, 6); // Range of numbers is 2 // plus size of array $n = 2 + count($arr); findTwoMissingNumbers($arr, $n); // This code is contributed by anuj_67. ?>
Javascript
<script> // Javascript Program to find 2 // Missing Numbers using O(1) // extra space and no overflow. // Function to find two missing numbers in range // [1, n]. This function assumes that size of array // is n-2 and all array elements are distinct function findTwoMissingNumbers(arr, n) { /* Get the XOR of all elements in arr[] and {1, 2 .. n} */ let XOR = arr[0]; for (let i = 1; i < n-2; i++) XOR ^= arr[i]; for (let i = 1; i <= n; i++) XOR ^= i; // Now XOR has XOR of two missing // elements. Any set // bit in it must be set in // one missing and unset in // other missing number // Get a set bit of XOR // (We get the rightmost set bit) let set_bit_no = XOR & ~(XOR-1); // Now divide elements in two // sets by comparing rightmost // set bit of XOR with bit at same // position in each element. let x = 0, y = 0; // Initialize missing numbers for (let i = 0; i < n-2; i++) { if (arr[i] & set_bit_no) x = x ^ arr[i]; /*XOR of first set in arr[] */ else y = y ^ arr[i]; /*XOR of second set in arr[] */ } for (let i = 1; i <= n; i++) { if (i & set_bit_no) x = x ^ i; /* XOR of first set in arr[] and {1, 2, ...n }*/ else y = y ^ i; /* XOR of second set in arr[] and {1, 2, ...n } */ } document.write(`Two Missing Numbers are<br> ${x} ${y}`); } // Driver program to test above function let arr = [1, 3, 5, 6]; // Range of numbers is 2 plus size of array n = 2 + arr.length; findTwoMissingNumbers(arr, n); </script>
Producción:
Two Missing Numbers are 2 4
Complejidad de tiempo: O(n)
Espacio auxiliar: O(1)
Sin desbordamiento de enteros
Este artículo es una contribución de Shivam Agrawal . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a contribuir@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA