Encuentra el término N de la serie 1, 4, 15, 72, 420…

Dado un número N. La tarea es escribir un programa para encontrar el término N en la siguiente serie: 

1, 4, 15, 72, 420…

Ejemplos:  

Input: 3
Output: 15
For N = 3, we know that the factorial of 3 is 6
Nth term = 6*(3+2)/2
         = 15
Input: 6
Output: 2880
For N = 6, we know that the factorial of 6 is 720
Nth term = 620*(6+2)/2
         = 2880

La idea es encontrar primero el factorial del número dado N, es decir, N!. Ahora el N-ésimo término de la serie anterior será:

N-ésimo término = N! * (N + 2)/2

A continuación se muestra la implementación del enfoque anterior: 

C++

// CPP program to find N-th term of the series:
// 1, 4, 15, 72, 420…
#include <iostream>
using namespace std;
 
// Function to find factorial of N
int factorial(int N)
{
    int fact = 1;
 
    for (int i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N        
    return fact;
}
 
// calculate Nth term of series
int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Function
int main()
{
    int N = 6;
     
    cout << nthTerm(N);
     
    return 0;
}

Java

// Java program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    int fact = 1;
 
    for (int i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N    
    return fact;
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void main(String args[])
{
    int N = 6;
     
    System.out.println(nthTerm(N));
}
}
 
// This code is contributed by Subhadeep

Python3

# Python 3 program to find
# N-th term of the series:
# 1, 4, 15, 72, 420…
 
# Function for finding
# factorial of N
def factorial(N) :
    fact = 1
    for i in range(1, N + 1) :
        fact = fact * i
 
    # return factorial of N
    return fact
 
# Function for calculating
# Nth term of series
def nthTerm(N) :
 
    # return nth term
    return (factorial(N) * (N + 2) // 2)
 
# Driver code
if __name__ == "__main__" :
     
    N = 6
 
    # Function Calling
    print(nthTerm(N))
 
# This code is contributed
# by ANKITRAI1

C#

// C# program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
using System;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    int fact = 1;
 
    for (int i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N    
    return fact;
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void Main()
{
    int N = 6;
     
    Console.Write(nthTerm(N));
}
}
 
// This code is contributed by ChitraNayal

PHP

<?php
// PHP program to find
// N-th term of the series:
// 1, 4, 15, 72, 420…
 
// Function for finding
// factorial of N
function factorial($N)
{
    $fact = 1;
    for($i = 1; $i <= $N; $i++)
        $fact = $fact * $i;
 
    // return factorial of N
    return $fact;
}
 
// Function for calculating
// Nth term of series
function nthTerm($N)
{
 
    // return nth term
    return (factorial($N) *
           ($N + 2) / 2);
}
 
// Driver code
$N = 6;
 
// Function Calling
echo nthTerm($N);
 
// This code is contributed
// by mits
?>

Javascript

<script>
 
// JavaScript program to find N-th term of the series:
// 1, 4, 15, 72, 420…
 
// Function to find factorial of N
function factorial( N)
{
    let fact = 1;
 
    for (let i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N        
    return fact;
}
 
// calculate Nth term of series
function nthTerm(N)
{
    return (factorial(N) * (N + 2) / 2);
}
// Driver code
 
    let N = 6;
   document.write( nthTerm(N) );
 
// This code contributed by aashish1995
 
</script>
Producción: 

2880

 

Complejidad de tiempo: O(n)

Complejidad espacial: O(1)

Otro enfoque: (Usando la recursividad) 

C++

// CPP program to find N-th term of the series:
// 1, 4, 15, 72, 420…
// Using recursion
#include <iostream>
using namespace std;
 
// Function to find factorial of N
// with recursion
int factorial(int N)
{
    // base condition
    if( N == 0 || N == 1 )
        return 1;
    // use recursion
    return N * factorial( N - 1 );
}
 
// calculate Nth term of series
int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Function
int main()
{
    int N = 6;
     
    cout << nthTerm(N);
     
    return 0;
}

Java

// Java program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    // base condition
    if( N == 0 || N == 1 )
        return 1;
    // use recursion
    return N * factorial( N - 1 );
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void main(String args[])
{
    int N = 6;
     
    System.out.println(nthTerm(N));
}
}

Python3

# Python3 program to find
# N-th term of the series:
# 1, 4, 15, 72, 420…
# Using recursion
 
# Function to find factorial
# of N with recursion
def factorial(N):
 
    # base condition
    if N == 0 or N == 1:
        return 1
 
    # use recursion
    return N * factorial(N - 1)
 
def nthTerm(N):
     
    # calculate Nth term of series
    return (factorial(N) * (N + 2) // 2)
 
# Driver code
N = 6
print(nthTerm(N))
 
# This code is contributed
# by Shrikant13

C#

// C# program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
using System;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    // base condition
    if( N == 0 || N == 1 )
        return 1;
    // use recursion
    return N * factorial( N - 1 );
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void Main()
{
    int N = 6;
     
    Console.Write(nthTerm(N));
}
}
 
// This code is contributed by ChitraNayal

PHP

<?php
// PHP program to find
// N-th term of the series:
// 1, 4, 15, 72, 420…
 
// Function to find factorial
// of N with recursion
function factorial($N)
{
    // base condition
    if($N == 0 or $N == 1)
        return 1;
         
    // use recursion
    return $N * factorial($N - 1);
}
 
// calculate Nth term of series
function nthTerm($N)
{
    return (factorial($N) *
           ($N + 2) / 2);
}
 
// Driver Code
$N = 6;
 
echo nthTerm($N);
 
// This code is contributed
// by Shashank
?>

Javascript

<script>
 
// Javascript program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
 
// Function to find factorial of N
function factorial(N)
{
     
    // Base condition
    if (N == 0 || N == 1)
        return 1;
         
    // Use recursion
    return N * factorial(N - 1);
}
 
// Calculate Nth term of series
function nthTerm(N)
{
    return(factorial(N) * (N + 2) / 2);
}
 
// Driver Code
let N = 6;
 
document.write(nthTerm(N));
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Producción: 

2880

 

Complejidad del tiempo : O(N)

Nota: el código anterior no funcionaría para valores grandes de N. Para encontrar los valores de N grande, use el concepto de Factorial para números grandes.

Publicación traducida automáticamente

Artículo escrito por competitive_gaurav y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *