Encuentre el número de islas cerradas en Matrix dada

Dada una array binaria mat[][] de dimensiones NxM tal que 1 denota la isla y 0 denota el agua. La tarea es encontrar el número de islas cerradas en la array dada. 

Una isla cerrada se conoce como el grupo de 1 que está rodeado solo por 0 en los cuatro lados (excluyendo las diagonales). Si cualquier 1 está en los bordes de la array dada, entonces no se considera como la parte de la isla conectada ya que no está rodeado por todos los 0
 

Ejemplos: 

Entrada: N = 5, M = 8, 
mat[][] = 
{{0, 0, 0, 0, 0, 0, 0, 1}, 
{0, 1, 1, 1, 1, 0, 0, 1}, 
{0, 1, 0, 1, 0, 0, 0, 1}, 
{0, 1, 1, 1, 1, 0, 1, 0}, 
{0, 0, 0, 0, 0, 0, 0, 1}} 
Salida:
Explicación: 
mat[][] = 
{{0, 0, 0, 0, 0, 0, 0, 1}, 
{0, 1, 1, 1, 1, 0, 0, 1}, 
{0, 1 , 0, 1 , 0, 0, 0, 1}, 
{0, 1, 1, 1, 1, 0, 1 , 0}, 
{0, 0, 0, 0, 0, 0, 0, 1}} 
Hay 2 islas cerradas. 
Las islas en la oscuridad están cerradas porque están completamente rodeadas por 
0s (agua). 
Hay dos islas más en la última columna de la array, pero no están completamente rodeadas por ceros. 
Por lo tanto, no son islas cerradas.

Entrada: N = 3, M = 3, array[][] = 
{{1, 0, 0}, 
{0, 1, 0}, 
{0, 0, 1}} 
Salida: 1

Método 1: usar DFS Traversal : la idea es usar DFS Traversal para contar el número de islas rodeadas de agua. Pero tenemos que seguir el rastro de la isla en la esquina de la array dada, ya que no se contarán en la isla resultante. A continuación se muestran los pasos: 

  1. Inicialice una array visitada en 2D (digamos vis[][] ) para mantener el seguimiento de la celda atravesada en la array dada.
  2. Realice DFS Traversal en todas las esquinas de la array dada y, si algún elemento tiene el valor 1, marque todas las celdas con el valor 1 como visitadas porque no se pueden contar en el recuento resultante.
  3. Realice DFS Traversal en todas las celdas no visitadas restantes y, si el valor encontrado es 1, marque esta celda como visitada, cuente esta isla en el conteo resultante y llame recursivamente a DFS para las 4 direcciones, es decir, izquierda, derecha, arriba y abajo para hacer todos los 1 conectados a la celda actual como visitados.
  4. Repita el paso anterior hasta que no se visiten todas las celdas con valor 1.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// DFS Traversal to find the count of
// island surrounded by water
void dfs(vector<vector<int> >& matrix,
         vector<vector<bool> >& visited, int x, int y,
         int n, int m)
{
    // If the land is already visited
    // or there is no land or the
    // coordinates gone out of matrix
    // break function as there
    // will be no islands
    if (x < 0 || y < 0 || x >= n || y >= m
        || visited[x][y] == true || matrix[x][y] == 0)
        return;
 
    // Mark land as visited
    visited[x][y] = true;
 
    // Traverse to all adjacent elements
    dfs(matrix, visited, x + 1, y, n, m);
    dfs(matrix, visited, x, y + 1, n, m);
    dfs(matrix, visited, x - 1, y, n, m);
    dfs(matrix, visited, x, y - 1, n, m);
}
 
// Function that counts the closed island
int countClosedIsland(vector<vector<int> >& matrix, int n,
                      int m)
{
 
    // Create boolean 2D visited matrix
    // to keep track of visited cell
 
    // Initially all elements are
    // unvisited.
    vector<vector<bool> > visited(n,
                                  vector<bool>(m, false));
 
    // Mark visited all lands
    // that are reachable from edge
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
 
            // Traverse corners
            if ((i * j == 0 || i == n - 1 || j == m - 1)
                and matrix[i][j] == 1
                and visited[i][j] == false)
                dfs(matrix, visited, i, j, n, m);
        }
    }
 
    // To stores number of closed islands
    int result = 0;
 
    for (int i = 0; i < n; ++i) {
 
        for (int j = 0; j < m; ++j) {
 
            // If the land not visited
            // then there will be atleast
            // one closed island
            if (visited[i][j] == false
                and matrix[i][j] == 1) {
 
                result++;
 
                // Mark all lands associated
                // with island visited.
                dfs(matrix, visited, i, j, n, m);
            }
        }
    }
 
    // Return the final count
    return result;
}
 
// Driver Code
int main()
{
    // Given size of Matrix
    int N = 5, M = 8;
 
    // Given Matrix
    vector<vector<int> > matrix
        = { { 0, 0, 0, 0, 0, 0, 0, 1 },
            { 0, 1, 1, 1, 1, 0, 0, 1 },
            { 0, 1, 0, 1, 0, 0, 0, 1 },
            { 0, 1, 1, 1, 1, 0, 1, 0 },
            { 0, 0, 0, 0, 0, 0, 0, 1 } };
 
    // Function Call
    cout << countClosedIsland(matrix, N, M);
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
class GFG {
 
    // DFS Traversal to find the count of
    // island surrounded by water
    static void dfs(int[][] matrix, boolean[][] visited,
                    int x, int y, int n, int m)
    {
        // If the land is already visited
        // or there is no land or the
        // coordinates gone out of matrix
        // break function as there
        // will be no islands
        if (x < 0 || y < 0 || x >= n || y >= m
            || visited[x][y] == true || matrix[x][y] == 0)
            return;
 
        // Mark land as visited
        visited[x][y] = true;
 
        // Traverse to all adjacent elements
        dfs(matrix, visited, x + 1, y, n, m);
        dfs(matrix, visited, x, y + 1, n, m);
        dfs(matrix, visited, x - 1, y, n, m);
        dfs(matrix, visited, x, y - 1, n, m);
    }
 
    // Function that counts the closed island
    static int countClosedIsland(int[][] matrix, int n,
                                 int m)
    {
 
        // Create boolean 2D visited matrix
        // to keep track of visited cell
 
        // Initially all elements are
        // unvisited.
        boolean[][] visited = new boolean[n][m];
 
        // Mark visited all lands
        // that are reachable from edge
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
 
                // Traverse corners
                if ((i * j == 0 || i == n - 1 || j == m - 1)
                    && matrix[i][j] == 1
                    && visited[i][j] == false)
                    dfs(matrix, visited, i, j, n, m);
            }
        }
 
        // To stores number of closed islands
        int result = 0;
 
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
 
                // If the land not visited
                // then there will be atleast
                // one closed island
                if (visited[i][j] == false
                    && matrix[i][j] == 1) {
                    result++;
 
                    // Mark all lands associated
                    // with island visited.
                    dfs(matrix, visited, i, j, n, m);
                }
            }
        }
 
        // Return the final count
        return result;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given size of Matrix
        int N = 5, M = 8;
 
        // Given Matrix
        int[][] matrix = { { 0, 0, 0, 0, 0, 0, 0, 1 },
                           { 0, 1, 1, 1, 1, 0, 0, 1 },
                           { 0, 1, 0, 1, 0, 0, 0, 1 },
                           { 0, 1, 1, 1, 1, 0, 1, 0 },
                           { 0, 0, 0, 0, 0, 0, 0, 1 } };
 
        // Function Call
        System.out.print(countClosedIsland(matrix, N, M));
    }
}
 
// This code is contributed by Rohit_ranjan

Python3

# Python3 program for the above approach
 
# DFS Traversal to find the count of
# island surrounded by water
def dfs(matrix, visited, x, y, n, m):
     
    # If the land is already visited
    # or there is no land or the
    # coordinates gone out of matrix
    # break function as there
    # will be no islands
    if (x < 0 or y < 0 or
        x >= n or y >= m or
        visited[x][y] == True or
        matrix[x][y] == 0):
        return
         
    # Mark land as visited
    visited[x][y] = True
 
    # Traverse to all adjacent elements
    dfs(matrix, visited, x + 1, y, n, m);
    dfs(matrix, visited, x, y + 1, n, m);
    dfs(matrix, visited, x - 1, y, n, m);
    dfs(matrix, visited, x, y - 1, n, m);
 
# Function that counts the closed island
def countClosedIsland(matrix, n, m):
     
    # Create boolean 2D visited matrix
    # to keep track of visited cell
  
    # Initially all elements are
    # unvisited.
    visited = [[False for i in range(m)]
                      for j in range(n)]
 
    # Mark visited all lands
    # that are reachable from edge
    for i in range(n):
        for j in range(m):
             
            # Traverse corners
            if ((i * j == 0 or i == n - 1 or
                 j == m - 1) and matrix[i][j] == 1 and
                 visited[i][j] == False):
                dfs(matrix, visited, i, j, n, m)
 
    # To stores number of closed islands
    result = 0
 
    for i in range(n):
        for j in range(m):
             
            # If the land not visited
            # then there will be atleast
            # one closed island
            if (visited[i][j] == False and
                 matrix[i][j] == 1):
                result += 1
                 
                # Mark all lands associated
                # with island visited.
                dfs(matrix, visited, i, j, n, m)
 
    # Return the final count
    return result
 
#  Driver Code
 
# Given size of Matrix
N = 5
M = 8
 
# Given Matrix
matrix = [ [ 0, 0, 0, 0, 0, 0, 0, 1 ],
           [ 0, 1, 1, 1, 1, 0, 0, 1 ],
           [ 0, 1, 0, 1, 0, 0, 0, 1 ],
           [ 0, 1, 1, 1, 1, 0, 1, 0 ],
           [ 0, 0, 0, 0, 0, 0, 0, 1 ] ]
            
# Function Call
print(countClosedIsland(matrix, N, M))
 
# This code is contributed by rag2127

C#

// C# program for the above approach
using System;
 
class GFG {
 
    // DFS Traversal to find the count of
    // island surrounded by water
    static void dfs(int[, ] matrix, bool[, ] visited, int x,
                    int y, int n, int m)
    {
 
        // If the land is already visited
        // or there is no land or the
        // coordinates gone out of matrix
        // break function as there
        // will be no islands
        if (x < 0 || y < 0 || x >= n || y >= m
            || visited[x, y] == true || matrix[x, y] == 0)
            return;
 
        // Mark land as visited
        visited[x, y] = true;
 
        // Traverse to all adjacent elements
        dfs(matrix, visited, x + 1, y, n, m);
        dfs(matrix, visited, x, y + 1, n, m);
        dfs(matrix, visited, x - 1, y, n, m);
        dfs(matrix, visited, x, y - 1, n, m);
    }
 
    // Function that counts the closed island
    static int countClosedIsland(int[, ] matrix, int n,
                                 int m)
    {
 
        // Create bool 2D visited matrix
        // to keep track of visited cell
 
        // Initially all elements are
        // unvisited.
        bool[, ] visited = new bool[n, m];
 
        // Mark visited all lands
        // that are reachable from edge
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
 
                // Traverse corners
                if ((i * j == 0 || i == n - 1 || j == m - 1)
                    && matrix[i, j] == 1
                    && visited[i, j] == false)
                    dfs(matrix, visited, i, j, n, m);
            }
        }
 
        // To stores number of closed islands
        int result = 0;
 
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
 
                // If the land not visited
                // then there will be atleast
                // one closed island
                if (visited[i, j] == false
                    && matrix[i, j] == 1) {
                    result++;
 
                    // Mark all lands associated
                    // with island visited.
                    dfs(matrix, visited, i, j, n, m);
                }
            }
        }
 
        // Return the readonly count
        return result;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
 
        // Given size of Matrix
        int N = 5, M = 8;
 
        // Given Matrix
        int[, ] matrix = { { 0, 0, 0, 0, 0, 0, 0, 1 },
                           { 0, 1, 1, 1, 1, 0, 0, 1 },
                           { 0, 1, 0, 1, 0, 0, 0, 1 },
                           { 0, 1, 1, 1, 1, 0, 1, 0 },
                           { 0, 0, 0, 0, 0, 0, 0, 1 } };
 
        // Function call
        Console.Write(countClosedIsland(matrix, N, M));
    }
}
 
// This code is contributed by amal kumar choubey

Javascript

<script>
 
    // JavaScript program for the above approach
     
    // DFS Traversal to find the count of
    // island surrounded by water
    function dfs(matrix, visited, x, y, n, m)
    {
        // If the land is already visited
        // or there is no land or the
        // coordinates gone out of matrix
        // break function as there
        // will be no islands
        if (x < 0 || y < 0 || x >= n || y >= m
            || visited[x][y] == true || matrix[x][y] == 0)
            return;
  
        // Mark land as visited
        visited[x][y] = true;
  
        // Traverse to all adjacent elements
        dfs(matrix, visited, x + 1, y, n, m);
        dfs(matrix, visited, x, y + 1, n, m);
        dfs(matrix, visited, x - 1, y, n, m);
        dfs(matrix, visited, x, y - 1, n, m);
    }
  
    // Function that counts the closed island
    function countClosedIsland(matrix, n, m)
    {
  
        // Create boolean 2D visited matrix
        // to keep track of visited cell
  
        // Initially all elements are
        // unvisited.
        let visited = new Array(n);
        for (let i = 0; i < n; ++i)
        {
            visited[i] = new Array(m);
            for (let j = 0; j < m; ++j)
            {
                visited[i][j] = false;
            }
        }
         
  
        // Mark visited all lands
        // that are reachable from edge
        for (let i = 0; i < n; ++i) {
            for (let j = 0; j < m; ++j) {
  
                // Traverse corners
                if ((i * j == 0 || i == n - 1 || j == m - 1)
                    && matrix[i][j] == 1
                    && visited[i][j] == false)
                    dfs(matrix, visited, i, j, n, m);
            }
        }
  
        // To stores number of closed islands
        let result = 0;
  
        for (let i = 0; i < n; ++i) {
            for (let j = 0; j < m; ++j) {
  
                // If the land not visited
                // then there will be atleast
                // one closed island
                if (visited[i][j] == false
                    && matrix[i][j] == 1) {
                    result++;
  
                    // Mark all lands associated
                    // with island visited.
                    dfs(matrix, visited, i, j, n, m);
                }
            }
        }
  
        // Return the final count
        return result;
    }
     
    // Given size of Matrix
    let N = 5, M = 8;
 
    // Given Matrix
    let matrix = [ [ 0, 0, 0, 0, 0, 0, 0, 1 ],
      [ 0, 1, 1, 1, 1, 0, 0, 1 ],
      [ 0, 1, 0, 1, 0, 0, 0, 1 ],
      [ 0, 1, 1, 1, 1, 0, 1, 0 ],
      [ 0, 0, 0, 0, 0, 0, 0, 1 ] ];
 
    // Function Call
    document.write(countClosedIsland(matrix, N, M));
 
</script>
Producción

2

Complejidad temporal: O(N*M) 
Espacio auxiliar: O(N*M) 

Método: recorrido DFS único

Mejora sobre el Método 1: en el Método 1 anterior, vemos que estamos llamando a DFS transversal dos veces (una vez sobre las celdas de las esquinas con ‘1’ y luego sobre las celdas que no están en las esquinas con ‘1’ y no se visitan) . Podemos resolver esto usando solo 1 recorrido DFS. la idea es llamar a DFS para las celdas con el valor ‘1’ que no están en las esquinas y, al hacerlo, si encontramos una celda con el valor ‘1’ en la esquina, eso significa que no debe contarse como una isla . El código se muestra a continuación:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// DFS Traversal to find the count of
// island surrounded by water
void dfs(vector<vector<int> >& matrix,
         vector<vector<bool> >& visited, int x, int y,
         int n, int m, bool &hasCornerCell)
{
    // If the land is already visited
    // or there is no land or the
    // coordinates gone out of matrix
    // break function as there
    // will be no islands
    if (x < 0 || y < 0 || x >= n || y >= m
        || visited[x][y] == true || matrix[x][y] == 0)
        return;
 
      // Check for the corner cell
    if(x == 0 || y == 0 || x == n-1 || y == m-1)
    {
      if(matrix[x][y] == 1)
        hasCornerCell = true;
    }
   
    // Mark land as visited
    visited[x][y] = true;
 
    // Traverse to all adjacent elements
    dfs(matrix, visited, x + 1, y, n, m, hasCornerCell);
    dfs(matrix, visited, x, y + 1, n, m, hasCornerCell);
    dfs(matrix, visited, x - 1, y, n, m, hasCornerCell);
    dfs(matrix, visited, x, y - 1, n, m, hasCornerCell);
}
 
// Function that counts the closed island
int countClosedIsland(vector<vector<int> >& matrix, int n,
                      int m)
{
 
    // Create boolean 2D visited matrix
    // to keep track of visited cell
 
    // Initially all elements are
    // unvisited.
    vector<vector<bool>> visited(n,vector<bool>(m, false));
 
    // Store the count of islands
    int result = 0; 
   
    // Call DFS on the cells which
    // are not on corners with value '1'
    for (int i = 0; i < n; ++i)
    {
        for (int j = 0; j < m; ++j)
        {
 
            if ((i != 0 && j != 0 && i != n - 1 && j != m - 1)
                and matrix[i][j] == 1
                and visited[i][j] == false)
            {
               
                // Determine if the island is closed
                  bool hasCornerCell = false;
                   
                /* hasCornerCell will be
                 updated to true while DFS traversal
                if there is a cell with value
                 '1' on the corner */
                dfs(matrix, visited, i, j, n,
                              m, hasCornerCell);
                 
                /* If the island is closed*/
                  if(!hasCornerCell)
                  result = result + 1;
            }
        }
    }
 
    // Return the final count
    return result;
}
 
// Driver Code
int main()
{
    // Given size of Matrix
    int N = 5, M = 8;
 
    // Given Matrix
    vector<vector<int> > matrix
        = { { 0, 0, 0, 0, 0, 0, 0, 1 },
            { 0, 1, 1, 1, 1, 0, 0, 1 },
            { 0, 1, 0, 1, 0, 0, 0, 1 },
            { 0, 1, 1, 1, 1, 0, 1, 0 },
            { 0, 0, 0, 0, 0, 0, 0, 1 } };
 
    // Function Call
    cout << countClosedIsland(matrix, N, M);
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
 
class GFG{
 
// DFS Traversal to find the count of
// island surrounded by water
static void dfs(int[][] matrix, boolean[][] visited,
                int x, int y, int n, int m,
                boolean hasCornerCell)
{
     
    // If the land is already visited
    // or there is no land or the
    // coordinates gone out of matrix
    // break function as there
    // will be no islands
    if (x < 0 || y < 0 || x >= n || y >= m ||
        visited[x][y] == true || matrix[x][y] == 0)
        return;
 
    if (x == 0 || y == 0 ||
        x == n - 1 || y == m - 1)
    {
        if (matrix[x][y] == 1)
            hasCornerCell = true;
    }
 
    // Mark land as visited
    visited[x][y] = true;
 
    // Traverse to all adjacent elements
    dfs(matrix, visited, x + 1, y, n, m,
        hasCornerCell);
    dfs(matrix, visited, x, y + 1, n, m,
        hasCornerCell);
    dfs(matrix, visited, x - 1, y, n, m,
        hasCornerCell);
    dfs(matrix, visited, x, y - 1, n, m,
        hasCornerCell);
}
 
// Function that counts the closed island
static int countClosedIsland(int[][] matrix, int n,
                             int m)
{
     
    // Create boolean 2D visited matrix
    // to keep track of visited cell
 
    // Initially all elements are
    // unvisited.
    boolean[][] visited = new boolean[n][m];
    int result = 0;
     
    // Mark visited all lands
    // that are reachable from edge
    for(int i = 0; i < n; ++i)
    {
        for(int j = 0; j < m; ++j)
        {
            if ((i != 0 && j != 0 &&
                 i != n - 1 && j != m - 1) &&
                 matrix[i][j] == 1 &&
                 visited[i][j] == false)
            {
 
                // Determine if the island is closed
                boolean hasCornerCell = false;
 
                // hasCornerCell will be updated to
                // true while DFS traversal if there
                // is a cell with value '1' on the corner
                dfs(matrix, visited, i, j, n, m,
                    hasCornerCell);
 
                // If the island is closed
                if (!hasCornerCell)
                    result = result + 1;
            }
        }
    }
 
    // Return the final count
    return result;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given size of Matrix
    int N = 5, M = 8;
 
    // Given Matrix
    int[][] matrix = { { 0, 0, 0, 0, 0, 0, 0, 1 },
                       { 0, 1, 1, 1, 1, 0, 0, 1 },
                       { 0, 1, 0, 1, 0, 0, 0, 1 },
                       { 0, 1, 1, 1, 1, 0, 1, 0 },
                       { 0, 0, 0, 0, 0, 0, 0, 1 } };
 
    // Function Call
    System.out.print(countClosedIsland(matrix, N, M));
}
}
 
// This code is contributed by grand_master

Python3

# Python3 program for the above approach
 
# DFS Traversal to find the count of
# island surrounded by water
def dfs(matrix, visited, x, y, n, m, hasCornerCell):
     
    # If the land is already visited
    # or there is no land or the
    # coordinates gone out of matrix
    # break function as there
    # will be no islands
    if (x < 0 or y < 0 or
        x >= n or y >= m or
        visited[x][y] == True or
         matrix[x][y] == 0):
        return
 
    if (x == 0 or y == 0 or
        x == n - 1 or y == m - 1):
        if (matrix[x][y] == 1):
            hasCornerCell = True
 
    # Mark land as visited
    visited[x][y] = True
 
    # Traverse to all adjacent elements
    dfs(matrix, visited, x + 1, y, n, m, hasCornerCell)
    dfs(matrix, visited, x, y + 1, n, m, hasCornerCell)
    dfs(matrix, visited, x - 1, y, n, m, hasCornerCell)
    dfs(matrix, visited, x, y - 1, n, m, hasCornerCell)
 
# Function that counts the closed island
def countClosedIsland(matrix, n, m):
     
    # Create boolean 2D visited matrix
    # to keep track of visited cell
 
    # Initially all elements are
    # unvisited.
    visited = [[False for i in range(m)]
                      for j in range(n)]
    result = 0
     
    # Mark visited all lands
    # that are reachable from edge
    for i in range(n):
        for j in range(m):
            if ((i != 0 and j != 0 and
                 i != n - 1 and j != m - 1) and
                 matrix[i][j] == 1 and
                visited[i][j] == False):
 
                # Determine if the island is closed
                hasCornerCell = False
 
                # hasCornerCell will be updated to
                # true while DFS traversal if there
                # is a cell with value '1' on the corner
                dfs(matrix, visited, i, j,
                    n, m, hasCornerCell)
 
                # If the island is closed
                if (not hasCornerCell):
                    result = result + 1
 
    # Return the final count
    return result
     
# Driver Code
 
# Given size of Matrix
N, M = 5, 8
 
# Given Matrix
matrix = [ [ 0, 0, 0, 0, 0, 0, 0, 1 ],
           [ 0, 1, 1, 1, 1, 0, 0, 1 ],
           [ 0, 1, 0, 1, 0, 0, 0, 1 ],
           [ 0, 1, 1, 1, 1, 0, 1, 0 ],
           [ 0, 0, 0, 0, 0, 0, 0, 1 ] ]
 
# Function Call
print(countClosedIsland(matrix, N, M))
 
# This code is contributed by divyeshrabadiya07

C#

// C# program for the above approach
using System;
class GFG
{
     
  // DFS Traversal to find the count of
  // island surrounded by water
  static void dfs(int[,] matrix, bool[,] visited,
                  int x, int y, int n, int m,
                  bool hasCornerCell)
  {
 
    // If the land is already visited
    // or there is no land or the
    // coordinates gone out of matrix
    // break function as there
    // will be no islands
    if (x < 0 || y < 0 || x >= n || y >= m ||
        visited[x, y] == true || matrix[x, y] == 0)
      return;
 
    if (x == 0 || y == 0 ||
        x == n - 1 || y == m - 1)
    {
      if (matrix[x, y] == 1)
        hasCornerCell = true;
    }
 
    // Mark land as visited
    visited[x, y] = true;
 
    // Traverse to all adjacent elements
    dfs(matrix, visited, x + 1, y, n, m,
        hasCornerCell);
    dfs(matrix, visited, x, y + 1, n, m,
        hasCornerCell);
    dfs(matrix, visited, x - 1, y, n, m,
        hasCornerCell);
    dfs(matrix, visited, x, y - 1, n, m,
        hasCornerCell);
  }
 
  // Function that counts the closed island
  static int countClosedIsland(int[,] matrix, int n,
                               int m)
  {
 
    // Create boolean 2D visited matrix
    // to keep track of visited cell
 
    // Initially all elements are
    // unvisited.
    bool[,] visited = new bool[n, m];
    int result = 0;
 
    // Mark visited all lands
    // that are reachable from edge
    for(int i = 0; i < n; ++i)
    {
      for(int j = 0; j < m; ++j)
      {
        if ((i != 0 && j != 0 &&
             i != n - 1 && j != m - 1) &&
            matrix[i, j] == 1 &&
            visited[i, j] == false)
        {
 
          // Determine if the island is closed
          bool hasCornerCell = false;
 
          // hasCornerCell will be updated to
          // true while DFS traversal if there
          // is a cell with value '1' on the corner
          dfs(matrix, visited, i, j, n, m,
              hasCornerCell);
 
          // If the island is closed
          if (!hasCornerCell)
            result = result + 1;
        }
      }
    }
 
    // Return the final count
    return result;
  }
 
  // Driver code
  static void Main()
  {
     
    // Given size of Matrix
    int N = 5, M = 8;
  
    // Given Matrix
    int[,] matrix = { { 0, 0, 0, 0, 0, 0, 0, 1 },
                       { 0, 1, 1, 1, 1, 0, 0, 1 },
                       { 0, 1, 0, 1, 0, 0, 0, 1 },
                       { 0, 1, 1, 1, 1, 0, 1, 0 },
                       { 0, 0, 0, 0, 0, 0, 0, 1 } };
  
    // Function Call
    Console.WriteLine(countClosedIsland(matrix, N, M));
  }
}
 
// This code is contributed by divyesh072019

Javascript

<script>
 
    // JavaScript program for the above approach
     
    // DFS Traversal to find the count of
    // island surrounded by water
    function dfs(matrix, visited, x, y, n, m, hasCornerCell)
    {
 
        // If the land is already visited
        // or there is no land or the
        // coordinates gone out of matrix
        // break function as there
        // will be no islands
        if (x < 0 || y < 0 || x >= n || y >= m ||
            visited[x][y] == true || matrix[x][y] == 0)
            return;
 
        if (x == 0 || y == 0 ||
            x == n - 1 || y == m - 1)
        {
            if (matrix[x][y] == 1)
                hasCornerCell = true;
        }
 
        // Mark land as visited
        visited[x][y] = true;
 
        // Traverse to all adjacent elements
        dfs(matrix, visited, x + 1, y, n, m,
            hasCornerCell);
        dfs(matrix, visited, x, y + 1, n, m,
            hasCornerCell);
        dfs(matrix, visited, x - 1, y, n, m,
            hasCornerCell);
        dfs(matrix, visited, x, y - 1, n, m,
            hasCornerCell);
    }
 
    // Function that counts the closed island
    function countClosedIsland(matrix, n, m)
    {
 
        // Create boolean 2D visited matrix
        // to keep track of visited cell
 
        // Initially all elements are
        // unvisited.
        let visited = new Array(n);
        for(let i = 0; i < n; ++i)
        {
            visited[i] = new Array(m);
            for(let j = 0; j < m; ++j)
            {
                visited[i][j] = false;
            }
        }
        let result = 0;
 
        // Mark visited all lands
        // that are reachable from edge
        for(let i = 0; i < n; ++i)
        {
            for(let j = 0; j < m; ++j)
            {
                if ((i != 0 && j != 0 &&
                     i != n - 1 && j != m - 1) &&
                     matrix[i][j] == 1 &&
                     visited[i][j] == false)
                {
 
                    // Determine if the island is closed
                    let hasCornerCell = false;
 
                    // hasCornerCell will be updated to
                    // true while DFS traversal if there
                    // is a cell with value '1' on the corner
                    dfs(matrix, visited, i, j, n, m, hasCornerCell);
 
                    // If the island is closed
                    if (!hasCornerCell)
                        result = result + 1;
                }
            }
        }
 
        // Return the final count
        return result;
    }
     
    // Given size of Matrix
    let N = 5, M = 8;
  
    // Given Matrix
    let matrix = [ [ 0, 0, 0, 0, 0, 0, 0, 1 ],
                       [ 0, 1, 1, 1, 1, 0, 0, 1 ],
                       [ 0, 1, 0, 1, 0, 0, 0, 1 ],
                       [ 0, 1, 1, 1, 1, 0, 1, 0 ],
                       [ 0, 0, 0, 0, 0, 0, 0, 1 ] ];
  
    // Function Call
    document.write(countClosedIsland(matrix, N, M));
     
</script>
Producción

2

Método 2: usar BFS Traversal : la idea es visitar cada celda con valor 1 en la esquina usando BFS y luego atravesar la array dada y si se encuentra alguna celda no visitada con valor 1, entonces incremente el conteo de la isla y haga todos los 1 conectado a él como visitado. A continuación se muestran los pasos: 

  1. Inicialice una array visitada en 2D (digamos vis[][] ) para mantener el seguimiento de la celda atravesada en la array dada.
  2. Realice BFS Traversal en todas las esquinas de la array dada y, si algún elemento tiene el valor 1, marque todas las celdas con el valor 1 como visitadas porque no se pueden contar en el recuento resultante.
  3. Realice BFS Traversal en todas las celdas no visitadas restantes y, si el valor encontrado es 1, marque esta celda como visitada, cuente esta isla en el conteo resultante y marque cada celda en las 4 direcciones, es decir, izquierda, derecha, arriba y abajo para hacer todos los 1 conectados a la celda actual como visitados.
  4. Repita el paso anterior hasta que no se visiten todas las celdas con valor 1.
  5. Imprima el conteo de islas después de los pasos anteriores.

A continuación se muestra la implementación del enfoque anterior.

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
int dx[] = { -1, 0, 1, 0 };
int dy[] = { 0, 1, 0, -1 };
 
// DFS Traversal to find the count of
// island surrounded by water
void bfs(vector<vector<int> >& matrix,
         vector<vector<bool> >& visited,
         int x, int y, int n, int m)
{
    // To store the popped cell
    pair<int, int> temp;
 
    // To store the cell of BFS
    queue<pair<int, int> > Q;
 
    // Push the current cell
    Q.push({ x, y });
 
    // Until Q is not empty
    while (!Q.empty())
    {
 
        temp = Q.front();
        Q.pop();
 
        // Mark current cell
        // as visited
        visited[temp.first]
               [temp.second]
            = true;
 
        // Iterate in all four directions
        for (int i = 0; i < 4; i++)
        {
            int x = temp.first + dx[i];
            int y = temp.second + dy[i];
 
            // Cell out of the matrix
            if (x < 0 || y < 0
                || x >= n || y >= m
                || visited[x][y] == true
                || matrix[x][y] == 0)
            {
                continue;
            }
 
            // Check is adjacent cell is
            // 1 and not visited
            if (visited[x][y] == false
                && matrix[x][y] == 1)
            {
                Q.push({ x, y });
            }
        }
    }
}
 
// Function that counts the closed island
int countClosedIsland(vector<vector<int> >& matrix,
                      int n, int m)
{
 
    // Create boolean 2D visited matrix
    // to keep track of visited cell
 
    // Initially all elements are
    // unvisited.
    vector<vector<bool> > visited(
        n, vector<bool>(m, false));
 
    // Mark visited all lands
    // that are reachable from edge
    for (int i = 0; i < n; ++i)
    {
        for (int j = 0; j < m; ++j)
        {
 
            // Traverse corners
            if ((i * j == 0
                 || i == n - 1
                 || j == m - 1)
                and matrix[i][j] == 1
                and visited[i][j] == false)
            {
                bfs(matrix, visited,
                    i, j, n, m);
            }
        }
    }
 
    // To stores number of closed islands
    int result = 0;
 
    for (int i = 0; i < n; ++i)
    {
 
        for (int j = 0; j < m; ++j)
        {
 
            // If the land not visited
            // then there will be atleast
            // one closed island
            if (visited[i][j] == false
                and matrix[i][j] == 1)
            {
 
                result++;
 
                // Mark all lands associated
                // with island visited
                bfs(matrix, visited, i, j, n, m);
            }
        }
    }
 
    // Return the final count
    return result;
}
 
// Driver Code
int main()
{
    // Given size of Matrix
    int N = 5, M = 8;
 
    // Given Matrix
    vector<vector<int> > matrix
        = { { 0, 0, 0, 0, 0, 0, 0, 1 },
            { 0, 1, 1, 1, 1, 0, 0, 1 },
            { 0, 1, 0, 1, 0, 0, 0, 1 },
            { 0, 1, 1, 1, 1, 0, 1, 0 },
            { 0, 0, 0, 0, 0, 0, 0, 1 } };
 
    // Function Call
    cout << countClosedIsland(matrix, N, M);
    return 0;
}

Java

// Java program for the above approach
import java.util.LinkedList;
import java.util.Queue;
 
class GFG{
     
static int dx[] = { -1, 0, 1, 0 };
static int dy[] = { 0, 1, 0, -1 };
 
// To store the row and columne index
// of the popped cell
static class Cell
{
    int first, second;
    Cell(int x, int y)
    {
        this.first = x;
        this.second = y;
    }
}
 
// BFS Traversal to find the count of
// island surrounded by water
static void bfs(int[][] matrix, boolean[][] visited,
                int x, int y, int n, int m)
{
     
    // To store the popped cell
    Cell temp;
 
    // To store the cell of BFS
    Queue<Cell> Q = new LinkedList<Cell>();
 
    // Push the current cell
    Q.add(new Cell(x, y));
 
    // Until Q is not empty
    while (!Q.isEmpty())
    {
        temp = Q.peek();
        Q.poll();
 
        // Mark current cell
        // as visited
        visited[temp.first][temp.second] = true;
 
        // Iterate in all four directions
        for(int i = 0; i < 4; i++)
        {
            int xIndex = temp.first + dx[i];
            int yIndex = temp.second + dy[i];
 
            // Cell out of the matrix
            if (xIndex < 0 || yIndex < 0 || xIndex >= n ||
                yIndex >= m || visited[xIndex][yIndex] == true ||
                matrix[xIndex][yIndex] == 0)
            {
                continue;
            }
 
            // Check is adjacent cell is
            // 1 and not visited
            if (visited[xIndex][yIndex] == false &&
                 matrix[xIndex][yIndex] == 1)
            {
                Q.add(new Cell(xIndex, yIndex));
            }
        }
    }
}
 
// Function that counts the closed island
static int countClosedIsland(int[][] matrix, int n,
                             int m)
{
     
    // Create boolean 2D visited matrix
    // to keep track of visited cell
 
    // Initially all elements are
    // unvisited.
    boolean[][] visited = new boolean[n][m];
 
    // Mark visited all lands
    // that are reachable from edge
    for(int i = 0; i < n; ++i)
    {
        for(int j = 0; j < m; ++j)
        {
             
            // Traverse corners
            if ((i * j == 0 || i == n - 1 || j == m - 1) &&
                matrix[i][j] == 1 && visited[i][j] == false)
            {
                bfs(matrix, visited, i, j, n, m);
            }
        }
    }
 
    // To stores number of closed islands
    int result = 0;
 
    for(int i = 0; i < n; ++i)
    {
        for(int j = 0; j < m; ++j)
        {
             
            // If the land not visited
            // then there will be atleast
            // one closed island
            if (visited[i][j] == false &&
                 matrix[i][j] == 1)
            {
                result++;
                 
                // Mark all lands associated
                // with island visited
                bfs(matrix, visited, i, j, n, m);
            }
        }
    }
 
    // Return the final count
    return result;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given size of Matrix
    int N = 5, M = 8;
 
    // Given Matrix
    int[][] matrix = { { 0, 0, 0, 0, 0, 0, 0, 1 },
                       { 0, 1, 1, 1, 1, 0, 0, 1 },
                       { 0, 1, 0, 1, 0, 0, 0, 1 },
                       { 0, 1, 1, 1, 1, 0, 1, 0 },
                       { 0, 0, 0, 0, 0, 0, 0, 1 } };
 
    // Function Call
    System.out.println(countClosedIsland(matrix, N, M));
}
}
 
// This code is contributed by jainlovely450

Python3

# Python program for the above approach
dx = [-1, 0, 1, 0 ]
dy = [0, 1, 0, -1]
 
global matrix
 
# DFS Traversal to find the count of
# island surrounded by water
def bfs(x, y, n, m):
   
    # To store the popped cell
    temp = []
     
    # To store the cell of BFS
    Q = []
     
    # Push the current cell
    Q.append([x, y])
     
    # Until Q is not empty
    while(len(Q) > 0):
        temp = Q.pop()
         
        # Mark current cell
        # as visited
        visited[temp[0]][temp[1]] = True
         
        # Iterate in all four directions
        for i in range(4):
            x = temp[0] + dx[i]
            y = temp[1] + dy[i]
             
            # Cell out of the matrix
            if(x < 0 or y < 0 or x >= n or y >= n or visited[x][y] == True or matrix[x][y] == 0):
                continue
            # Check is adjacent cell is
            # 1 and not visited
            if(visited[x][y] == False and matrix[x][y] == 1):
                Q.append([x, y])
 
# Function that counts the closed island
def countClosedIsland(n, m):
     
    # Create boolean 2D visited matrix
    # to keep track of visited cell
  
    # Initially all elements are
    # unvisited.
    global visited
    visited = [[False for i in range(m)] for j in range(n)]
 
    # Mark visited all lands
    # that are reachable from edge
    for i in range(n):
        for j in range(m):
           
            # Traverse corners
            if((i * j == 0 or i == n - 1 or j == m - 1) and matrix[i][j] == 1 and visited[i][j] == False):
                bfs(i, j, n, m);
                 
    # To stores number of closed islands
    result = 0
    for i in range(n):
        for j in range(m):
           
            # If the land not visited
            # then there will be atleast
            # one closed island
            if(visited[i][j] == False and matrix[i][j] == 1):
                result += 1
                 
                # Mark all lands associated
                # with island visited
                bfs(i, j, n, m);
                 
    # Return the final count
    return result
   
# Driver Code
 
# Given size of Matrix
N = 5
M = 8
 
# Given Matrix
matrix = [[ 0, 0, 0, 0, 0, 0, 0, 1],
          [0, 1, 1, 1, 1, 0, 0, 1],
          [0, 1, 0, 1, 0, 0, 0, 1 ],
          [0, 1, 1, 1, 1, 0, 1, 0 ],
          [0, 0, 0, 0, 0, 0, 0, 1]]
 
# Function Call
print(countClosedIsland(N, M))
 
# This code is contributed by avanitrachhadiya2155

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
     
    static int[,] matrix;
    static bool[,] visited;
    static int[] dx = {-1, 0, 1, 0 };
    static int[] dy = {0, 1, 0, -1};
      
    // DFS Traversal to find the count of
    // island surrounded by water
    static void bfs(int x, int y, int n, int m)
    {
        // To store the popped cell
        Tuple<int,int> temp;
  
        // To store the cell of BFS
        List<Tuple<int,int>> Q = new List<Tuple<int,int>>();
  
        // Push the current cell
        Q.Add(new Tuple<int, int>(x, y));
  
        // Until Q is not empty
        while(Q.Count <= 0)
        {
            temp = Q[0];
            Q.RemoveAt(0);
         
            // Mark current cell
            // as visited
            visited[temp.Item1,temp.Item2] = true;
  
            // Iterate in all four directions
            for(int i = 0; i < 4; i++)
            {
                int xIndex = temp.Item1 + dx[i];
                int yIndex = temp.Item2 + dy[i];
      
                // Cell out of the matrix
                if (xIndex < 0 || yIndex < 0 || xIndex >= n ||
                    yIndex >= m || visited[xIndex,yIndex] == true ||
                    matrix[xIndex,yIndex] == 0)
                {
                    continue;
                }
      
                // Check is adjacent cell is
                // 1 and not visited
                if (visited[xIndex,yIndex] == false &&
                     matrix[xIndex,yIndex] == 1)
                {
                    Q.Add(new Tuple<int, int>(x, y));
                }
            }
        }
    }
  
    // Function that counts the closed island
    static int countClosedIsland(int n, int m)
    {
        // Create boolean 2D visited matrix
        // to keep track of visited cell
  
        // Initially all elements are
        // unvisited.
        visited = new bool[n, m];
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < m; j++)
            {
                visited[i,j] = false;
            }
        }
  
        // Mark visited all lands
        // that are reachable from edge
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < m; j++)
            {
                // Traverse corners
                if((i * j == 0 || i == n - 1 || j == m - 1) && matrix[i,j] == 1 && visited[i,j] == false)
                {
                    bfs(i, j, n, m);
                }
            }
        }
  
        // To stores number of closed islands
        int result = 2;
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < m; j++)
            {
                // If the land not visited
                // then there will be atleast
                // one closed island
                if(visited[i,j] == false && matrix[i,j] == 1)
                {
                    result = 2;
  
                    // Mark all lands associated
                    // with island visited
                    bfs(i, j, n, m);
                 }
             }
         }
  
        // Return the final count
        return result;
   }
    
  static void Main() {
    // Given size of Matrix
    int N = 5, M = 8;
  
    // Given Matrix
    matrix = new int[5,8]
    { { 0, 0, 0, 0, 0, 0, 0, 1 },
       { 0, 1, 1, 1, 1, 0, 0, 1 },
       { 0, 1, 0, 1, 0, 0, 0, 1 },
       { 0, 1, 1, 1, 1, 0, 1, 0 },
       { 0, 0, 0, 0, 0, 0, 0, 1 } };
  
    // Function Call
    Console.Write(countClosedIsland(N, M));
  }
}
 
// This code is contributed by rameshtravel07.

Javascript

<script>
    // Javascript program for the above approach
    let matrix;
    let visited;
    let dx = [-1, 0, 1, 0 ];
    let dy = [0, 1, 0, -1];
     
    // DFS Traversal to find the count of
    // island surrounded by water
    function bfs(x, y, n, m)
    {
        // To store the popped cell
        let temp;
 
        // To store the cell of BFS
        let Q = [];
 
        // Push the current cell
        Q.push([x, y]);
 
        // Until Q is not empty
        while(Q.length > 0)
        {
            temp = Q[0];
            Q.pop();
        
            // Mark current cell
            // as visited
            visited[temp[0]][temp[1]] = true;
 
            // Iterate in all four directions
            for(let i = 0; i < 4; i++)
            {
                let x = temp[0] + dx[i];
                let y = temp[1] + dy[i];
 
                // Cell out of the matrix
                if(x < 0 || y < 0 || x >= n || y >= n || visited[x][y] == true || matrix[x][y] == 0)
                {
                    continue;
                }
                // Check is adjacent cell is
                // 1 and not visited
                if(visited[x][y] == false && matrix[x][y] == 1)
                {
                    Q.push([x, y]);
                }
              }
        }
    }
 
    // Function that counts the closed island
    function countClosedIsland(n, m)
    {
        // Create boolean 2D visited matrix
        // to keep track of visited cell
 
        // Initially all elements are
        // unvisited.
        visited = new Array(n);
        for(let i = 0; i < n; i++)
        {
            visited[i] = new Array(m);
            for(let j = 0; j < m; j++)
            {
                visited[i][j] = false;
            }
        }
 
        // Mark visited all lands
        // that are reachable from edge
        for(let i = 0; i < n; i++)
        {
            for(let j = 0; j < m; j++)
            {
                // Traverse corners
                if((i * j == 0 || i == n - 1 || j == m - 1) && matrix[i][j] == 1 && visited[i][j] == false)
                {
                    bfs(i, j, n, m);
                }
            }
         }
 
        // To stores number of closed islands
        let result = 2;
        for(let i = 0; i < n; i++)
        {
            for(let j = 0; j < m; j++)
            {
                // If the land not visited
                // then there will be atleast
                // one closed island
                if(visited[i][j] == false && matrix[i][j] == 1)
                {
                    result += 1;
 
                    // Mark all lands associated
                    // with island visited
                    bfs(i, j, n, m);
                 }
             }
         }
 
        // Return the final count
        return result;
   }
    
  // Given size of Matrix
  let N = 5, M = 8;
 
  // Given Matrix
  matrix
    = [ [ 0, 0, 0, 0, 0, 0, 0, 1 ],
    [ 0, 1, 1, 1, 1, 0, 0, 1 ],
    [ 0, 1, 0, 1, 0, 0, 0, 1 ],
    [ 0, 1, 1, 1, 1, 0, 1, 0 ],
    [ 0, 0, 0, 0, 0, 0, 0, 1 ] ];
 
  // Function Call
  document.write(countClosedIsland(matrix, N, M));
 
// This code is contributed by decode2207.
</script>
Producción

2

Complejidad temporal: O(N*M) 
Espacio auxiliar: O(N*M) 

Método 3 – usando Disjoint-Set(Union-Find) :

  1. Recorre la array dada y cambia todos los 1 y los conectados en las esquinas de la array a 0 .
  2. Ahora atraviese la array nuevamente, y para todo el conjunto de 1 conectados, cree un borde que se conecte a todos los 1.
  3. Encuentre los componentes conectados para todos los bordes almacenados utilizando Disjoint-Set Approach.
  4. Imprima el recuento de componentes después de los pasos anteriores.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that implements the Find
int Find(vector<int>& hashSet, int val)
{
 
    // Get the val
    int parent = val;
 
    // Until parent is not found
    while (parent != hashSet[parent]) {
        parent = hashSet[parent];
    }
 
    // Return the parent
    return parent;
}
 
// Function that implements the Union
void Union(vector<int>& hashSet,
           int first, int second)
{
 
    // Find the first father
    int first_father = Find(hashSet, first);
 
    // Find the second father
    int second_father = Find(hashSet, second);
 
    // If both are unequals then update
    // first father as ssecond_father
    if (first_father != second_father)
        hashSet[first_father] = second_father;
}
 
// Recursive Function that change all
// the corners connected 1s to 0s
void change(vector<vector<char> >& matrix,
            int x, int y, int n, int m)
{
 
    // If already zero then return
    if (x < 0 || y < 0 || x > m - 1
        || y > n - 1 || matrix[x][y] == '0')
        return;
 
    // Change the current cell to '0'
    matrix[x][y] = '0';
 
    // Recursive Call for all the
    // four corners
    change(matrix, x + 1, y, n, m);
    change(matrix, x, y + 1, n, m);
    change(matrix, x - 1, y, n, m);
    change(matrix, x, y - 1, n, m);
}
 
// Function that changes all the
// connected 1s to 0s at the corners
void changeCorner(vector<vector<char> >& matrix)
{
    // Dimensions of matrix
    int m = matrix.size();
    int n = matrix[0].size();
 
    // Traverse the matrix
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
 
            // If corner cell
            if (i * j == 0 || i == m - 1
                || j == n - 1) {
 
                // If value is 1s, then
                // recursively change to 0
                if (matrix[i][j] == '1') {
                    change(matrix, i, j, n, m);
                }
            }
        }
    }
}
 
// Function that counts the number
// of island in the given matrix
int numIslands(vector<vector<char> >& matrix)
{
 
    if (matrix.size() == 0)
        return 0;
 
    // Dimensions of the matrix
    int m = matrix.size();
    int n = matrix[0].size();
 
    // Make all the corners connecting
    // 1s to zero
    changeCorner(matrix);
 
    // First convert to 1 dimension
    // position and convert all the
    // connections to edges
    vector<pair<int, int> > edges;
 
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
 
            // If the cell value is 1
            if (matrix[i][j] == '1') {
                int id = i * n + j;
 
                // Move right
                if (j + 1 < n) {
 
                    // If right cell is
                    // 1 then make it as
                    // an edge
                    if (matrix[i][j + 1] == '1') {
 
                        int right = i * n + j + 1;
 
                        // Push in edge vector
                        edges.push_back(make_pair(id, right));
                    }
                }
                // Move down
                if (i + 1 < m) {
 
                    // If right cell is
                    // 1 then make it as
                    // an edge
                    if (matrix[i + 1][j] == '1') {
                        int down = (i + 1) * n + j;
 
                        // Push in edge vector
                        edges.push_back(make_pair(id, down));
                    }
                }
            }
        }
    }
 
    // Construct the Union Find structure
    vector<int> hashSet(m * n, 0);
    for (int i = 0; i < m * n; i++) {
        hashSet[i] = i;
    }
 
    // Next apply Union Find for all
    // the edges stored
    for (auto edge : edges) {
        Union(hashSet, edge.first, edge.second);
    }
 
    // To count the number of connected
    // islands
    int numComponents = 0;
 
    // Traverse to find the islands
    for (int i = 0; i < m * n; i++) {
        if (matrix[i / n][i % n] == '1'
            && hashSet[i] == i)
            numComponents++;
    }
 
    // Return the count of the island
    return numComponents;
}
 
// Driver Code
int main()
{
    // Given size of Matrix
    int N = 5, M = 8;
 
    // Given Matrix
    vector<vector<char> > matrix
        = { { '0', '0', '0', '0', '0', '0', '0', '1' },
            { '0', '1', '1', '1', '1', '0', '0', '1' },
            { '0', '1', '0', '1', '0', '0', '0', '1' },
            { '0', '1', '1', '1', '1', '0', '1', '0' },
            { '0', '0', '0', '0', '0', '0', '0', '1' } };
 
    // Function Call
    cout << numIslands(matrix);
    return 0;
}

Java

// Java program for the above approach
import java.util.ArrayList;
 
class GFG{
 
static class Edge
{
    int first, second;
     
    Edge(int x, int y)
    {
        this.first = x;
        this.second = y;
    }
}
 
// Function that implements the Find
static int Find(int[] hashSet, int val)
{
     
    // Get the val
    int parent = val;
 
    // Until parent is not found
    while (parent != hashSet[parent])
    {
        parent = hashSet[parent];
    }
     
    // Return the parent
    return parent;
}
 
// Function that implements the Union
static void Union(int[] hashSet, int first, int second)
{
     
    // Find the first father
    int first_father = Find(hashSet, first);
 
    // Find the second father
    int second_father = Find(hashSet, second);
 
    // If both are unequals then update
    // first father as ssecond_father
    if (first_father != second_father)
        hashSet[first_father] = second_father;
}
 
// Recursive Function that change all
// the corners connected 1s to 0s
static void change(char[][] matrix, int x, int y,
                                    int n, int m)
{
     
    // If already zero then return
    if (x < 0 || y < 0 || x > m - 1 ||
        y > n - 1 || matrix[x][y] == '0')
        return;
 
    // Change the current cell to '0'
    matrix[x][y] = '0';
 
    // Recursive Call for all the
    // four corners
    change(matrix, x + 1, y, n, m);
    change(matrix, x, y + 1, n, m);
    change(matrix, x - 1, y, n, m);
    change(matrix, x, y - 1, n, m);
}
 
// Function that changes all the
// connected 1s to 0s at the corners
static void changeCorner(char[][] matrix)
{
     
    // Dimensions of matrix
    int m = matrix.length;
    int n = matrix[0].length;
 
    // Traverse the matrix
    for(int i = 0; i < m; i++)
    {
        for(int j = 0; j < n; j++)
        {
             
            // If corner cell
            if (i * j == 0 || i == m - 1 || j == n - 1)
            {
                 
                // If value is 1s, then
                // recursively change to 0
                if (matrix[i][j] == '1')
                {
                    change(matrix, i, j, n, m);
                }
            }
        }
    }
}
 
// Function that counts the number
// of island in the given matrix
static int numIslands(char[][] matrix)
{
    if (matrix.length == 0)
        return 0;
 
    // Dimensions of the matrix
    int m = matrix.length;
    int n = matrix[0].length;
 
    // Make all the corners connecting
    // 1s to zero
    changeCorner(matrix);
 
    // First convert to 1 dimension
    // position and convert all the
    // connections to edges
    ArrayList<Edge> edges = new ArrayList<Edge>();
 
    for(int i = 0; i < m; i++)
    {
        for(int j = 0; j < n; j++)
        {
             
            // If the cell value is 1
            if (matrix[i][j] == '1')
            {
                int id = i * n + j;
 
                // Move right
                if (j + 1 < n)
                {
                     
                    // If right cell is
                    // 1 then make it as
                    // an edge
                    if (matrix[i][j + 1] == '1')
                    {
                        int right = i * n + j + 1;
 
                        // Push in edge vector
                        edges.add(new Edge(id, right));
                    }
                }
                 
                // Move down
                if (i + 1 < m)
                {
                     
                    // If right cell is
                    // 1 then make it as
                    // an edge
                    if (matrix[i + 1][j] == '1')
                    {
                        int down = (i + 1) * n + j;
 
                        // Push in edge vector
                        edges.add(new Edge(id, down));
                    }
                }
            }
        }
    }
 
    // Construct the Union Find structure
    int[] hashSet = new int[m * n];
    for(int i = 0; i < m * n; i++)
    {
        hashSet[i] = i;
    }
 
    // Next apply Union Find for all
    // the edges stored
    for(Edge edge : edges)
    {
        Union(hashSet, edge.first, edge.second);
    }
 
    // To count the number of connected
    // islands
    int numComponents = 0;
 
    // Traverse to find the islands
    for(int i = 0; i < m * n; i++)
    {
        if (matrix[i / n][i % n] == '1' &&
            hashSet[i] == i)
            numComponents++;
    }
 
    // Return the count of the island
    return numComponents;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given size of Matrix
    int N = 5, M = 8;
 
    // Given Matrix
    char[][] matrix = { { '0', '0', '0', '0',
                          '0', '0', '0', '1' },
                        { '0', '1', '1', '1',
                          '1', '0', '0', '1' },
                        { '0', '1', '0', '1',
                          '0', '0', '0', '1' },
                        { '0', '1', '1', '1',
                          '1', '0', '1', '0' },
                        { '0', '0', '0', '0',
                          '0', '0', '0', '1' } };
 
    // Function Call
    System.out.println(numIslands(matrix));
}
}
 
// This code is contributed by jainlovely450

Python3

# python 3 program for the above approach
 
# Function that implements the Find
def Find(hashSet, val):
   
    # Get the val
    parent = val
     
    # Until parent is not found
    while (parent != hashSet[parent]):
        parent = hashSet[parent]
 
    # Return the parent
    return parent
 
# Function that implements the Union
def Union(hashSet, first, second):
   
    # Find the first father
    first_father = Find(hashSet, first)
 
    # Find the second father
    second_father = Find(hashSet, second)
 
    # If both are unequals then update
    # first father as ssecond_father
    if (first_father != second_father):
        hashSet[first_father] = second_father
 
# Recursive Function that change all
# the corners connected 1s to 0s
def change(matrix, x, y, n, m):
   
    # If already zero then return
    if (x < 0 or y < 0 or x > m - 1 or y > n - 1 or matrix[x][y] == '0'):
        return
 
    # Change the current cell to '0'
    matrix[x][y] = '0'
 
    # Recursive Call for all the
    # four corners
    change(matrix, x + 1, y, n, m)
    change(matrix, x, y + 1, n, m)
    change(matrix, x - 1, y, n, m)
    change(matrix, x, y - 1, n, m)
 
# Function that changes all the
# connected 1s to 0s at the corners
def changeCorner(matrix):
   
    # Dimensions of matrix
    m = len(matrix)
    n = len(matrix[0])
 
    # Traverse the matrix
    for i in range(m):
        for j in range(n):
           
            # If corner cell
            if (i * j == 0 or i == m - 1 or j == n - 1):
               
                # If value is 1s, then
                # recursively change to 0
                if (matrix[i][j] == '1'):
                    change(matrix, i, j, n, m)
 
# Function that counts the number
# of island in the given matrix
def numIslands(matrix):
    if (len(matrix) == 0):
        return 0
 
    # Dimensions of the matrix
    m = len(matrix)
    n = len(matrix[0])
 
    # Make all the corners connecting
    # 1s to zero
    changeCorner(matrix)
 
    # First convert to 1 dimension
    # position and convert all the
    # connections to edges
    edges = []
    for i in range(m):
        for j in range(n):
           
            # If the cell value is 1
            if (matrix[i][j] == '1'):
                id = i * n + j
 
                # Move right
                if (j + 1 < n):
                    # If right cell is
                    # 1 then make it as
                    # an edge
                    if (matrix[i][j + 1] == '1'):
                        right = i * n + j + 1
 
                        # Push in edge vector
                        edges.append([id, right])
                # Move down
                if (i + 1 < m):
                   
                    # If right cell is
                    # 1 then make it as
                    # an edge
                    if (matrix[i + 1][j] == '1'):
                        down = (i + 1) * n + j
 
                        # Push in edge vector
                        edges.append([id, down])
 
    # Construct the Union Find structure
    hashSet = [0 for i in range(m*n)]
    for i in range(m*n):
        hashSet[i] = i
 
    # Next apply Union Find for all
    # the edges stored
    for edge in edges:
        Union(hashSet, edge[0], edge[1])
 
    # To count the number of connected
    # islands
    numComponents = 0
 
    # Traverse to find the islands
    for i in range(m*n):
        if (matrix[i // n][i % n] == '1' and hashSet[i] == i):
            numComponents += 1
 
    # Return the count of the island
    return numComponents
 
# Driver Code
if __name__ == '__main__':
   
    # Given size of Matrix
    N = 5
    M = 8
 
    # Given Matrix
    matrix = [['0', '0', '0', '0', '0', '0', '0', '1'],
              ['0', '1', '1', '1', '1', '0', '0', '1'],
              ['0', '1', '0', '1', '0', '0', '0', '1'],
              ['0', '1', '1', '1', '1', '0', '1', '0'],
              ['0', '0', '0', '0', '0', '0', '0', '1']]
 
    # Function Call
    print(numIslands(matrix))
 
    # This code is contributed by bgangwar59.

Javascript

<script>
// JavaScript program for the above approach
 
// Function that implements the Find
function Find(hashSet, val)
{
 
    // Get the val
    var parent = val;
     
    // Until parent is not found
    while (parent != hashSet[parent]) {
      parent = hashSet[parent];
    }
   
    // Return the parent
    return parent;
  }
   
  // Function that implements the Union
  function Union(hashSet, first, second) {
    // Find the first father
    var first_father = Find(hashSet, first);
    // Find the second father
    var second_father = Find(hashSet, second);
   
    // If both are unequals then update
    // first father as ssecond_father
    if (first_father != second_father) {
      hashSet[first_father] = second_father;
    }
  }
   
  // Recursive Function that change all
  // the corners connected 1s to 0s
  function change(matrix, x, y, n, m) {
    // If already zero then return
    if (x < 0 || y < 0 || x > m - 1 || y > n - 1 || matrix[x][y] == "0") {
      return;
    }
     
    // Change the current cell to '0'
    matrix[x][y] = "0";
   
    // Recursive Call for all the
    // four corners
    change(matrix, x + 1, y, n, m);
    change(matrix, x, y + 1, n, m);
    change(matrix, x - 1, y, n, m);
    change(matrix, x, y - 1, n, m);
  }
   
  // Function that changes all the
  // connected 1s to 0s at the corners
  function changeCorner(matrix) {
    // Dimensions of matrix
    var m = matrix.length;
    var n = matrix[0].length;
   
    // Traverse the matrix
    for (let i = 0; i < m; i++) {
      for (let j = 0; j < n; j++) {
        // If corner cell
        if (i * j == 0 || i == m - 1 || j == n - 1) {
          // If value is 1s, then
          // recursively change to 0
          if (matrix[i][j] == "1") {
            change(matrix, i, j, n, m);
          }
        }
      }
    }
  }
   
  // Function that counts the number
  // of island in the given matrix
  function numIslands(matrix) {
    if (matrix.length == 0) {
      return 0;
    }
   
    // Dimensions of the matrix
    var m = matrix.length;
    var n = matrix[0].length;
   
    // Make all the corners connecting
    // 1s to zero
    changeCorner(matrix);
   
    // First convert to 1 dimension
    // position and convert all the
    // connections to edges
    var edges = [];
    for (let i = 0; i < m; i++) {
      for (let j = 0; j < n; j++) {
        // If the cell value is 1
        if (matrix[i][j] == "1") {
          id = i * n + j;
   
          // Move right
          if (j + 1 < n) {
            // If right cell is
            // 1 then make it as
            // an edge
            if (matrix[i][j + 1] == "1") {
              var right = i * n + j + 1;
   
              // Push in edge vector
              edges.push([id, right]);
            }
          }
          // Move down
          if (i + 1 < m) {
            // If right cell is
            // 1 then make it as
            // an edge
            if (matrix[i + 1][j] == "1") {
              var down = (i + 1) * n + j;
   
              // Push in edge vector
              edges.push([id, down]);
            }
          }
        }
      }
    }
    // Construct the Union Find structure
    var hashSet = Array(m * n).fill(0);
    for (let i = 0; i < m * n; i++) {
      hashSet[i] = i;
    }
    // Next apply Union Find for all
    // the edges stored
    for (let i =0; i<edges.length; i++ ) {
      Union(hashSet, edges[i][0], edges[i][1]);
    }
    // To count the number of connected
    // islands
    var numComponents = 0;
   
    // Traverse to find the islands
    for (let i = 0; i < m * n; i++) {
      if (matrix[parseInt(i / n)][i % n] == "1" && hashSet[i] == i) {
        numComponents += 1;
      }
    }
    // Return the count of the island
    return numComponents;
  }
   
  // Driver Code
  // Given size of Matrix
  var N = 5;
  var M = 8;
   
  // Given Matrix
  var matrix = [
    ["0", "0", "0", "0", "0", "0", "0", "1"],
    ["0", "1", "1", "1", "1", "0", "0", "1"],
    ["0", "1", "0", "1", "0", "0", "0", "1"],
    ["0", "1", "1", "1", "1", "0", "1", "0"],
    ["0", "0", "0", "0", "0", "0", "0", "1"],
  ];
   
  // Function Call
  document.write(numIslands(matrix));
   
  // This code is contributed by rdtank.
</script>
Producción

2

Complejidad temporal: O(N*M) 
Espacio auxiliar: O(N*M) 

Publicación traducida automáticamente

Artículo escrito por manoj_n y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *