Dada una array ordenada arr[] y un valor X, encuentre los k elementos más cercanos a X en arr[].
Ejemplos:
Input: K = 4, X = 35 arr[] = {12, 16, 22, 30, 35, 39, 42, 45, 48, 50, 53, 55, 56} Output: 30 39 42 45
Tenga en cuenta que si el elemento está presente en la array, entonces no debería estar en la salida, solo se requieren los otros elementos más cercanos.
En las siguientes soluciones, se supone que todos los elementos de la array son distintos.
Una solución simple es hacer una búsqueda lineal de k elementos más cercanos.
- Comience desde el primer elemento y busque el punto de cruce (el punto antes del cual los elementos son menores o iguales a X y después del cual los elementos son mayores). Este paso toma tiempo O(n).
- Una vez que encontramos el punto de cruce, podemos comparar elementos en ambos lados del punto de cruce para imprimir los elementos k más cercanos. Este paso lleva O(k) tiempo.
La complejidad temporal de la solución anterior es O(n).
Una Solución Optimizada es encontrar k elementos en O(Logn + k) tiempo. La idea es utilizar la búsqueda binaria para encontrar el punto de cruce. Una vez que encontramos el índice del punto de cruce, podemos imprimir los k elementos más cercanos en un tiempo O(k).
C++
#include<stdio.h> /* Function to find the cross over point (the point before which elements are smaller than or equal to x and after which greater than x)*/ int findCrossOver(int arr[], int low, int high, int x) { // Base cases if (arr[high] <= x) // x is greater than all return high; if (arr[low] > x) // x is smaller than all return low; // Find the middle point int mid = (low + high)/2; /* low + (high - low)/2 */ /* If x is same as middle element, then return mid */ if (arr[mid] <= x && arr[mid+1] > x) return mid; /* If x is greater than arr[mid], then either arr[mid + 1] is ceiling of x or ceiling lies in arr[mid+1...high] */ if(arr[mid] < x) return findCrossOver(arr, mid+1, high, x); return findCrossOver(arr, low, mid - 1, x); } // This function prints k closest elements to x in arr[]. // n is the number of elements in arr[] void printKclosest(int arr[], int x, int k, int n) { // Find the crossover point int l = findCrossOver(arr, 0, n-1, x); int r = l+1; // Right index to search int count = 0; // To keep track of count of elements already printed // If x is present in arr[], then reduce left index // Assumption: all elements in arr[] are distinct if (arr[l] == x) l--; // Compare elements on left and right of crossover // point to find the k closest elements while (l >= 0 && r < n && count < k) { if (x - arr[l] < arr[r] - x) printf("%d ", arr[l--]); else printf("%d ", arr[r++]); count++; } // If there are no more elements on right side, then // print left elements while (count < k && l >= 0) printf("%d ", arr[l--]), count++; // If there are no more elements on left side, then // print right elements while (count < k && r < n) printf("%d ", arr[r++]), count++; } /* Driver program to check above functions */ int main() { int arr[] ={12, 16, 22, 30, 35, 39, 42, 45, 48, 50, 53, 55, 56}; int n = sizeof(arr)/sizeof(arr[0]); int x = 35, k = 4; printKclosest(arr, x, 4, n); return 0; }
Java
// Java program to find k closest elements to a given value class KClosest { /* Function to find the cross over point (the point before which elements are smaller than or equal to x and after which greater than x)*/ int findCrossOver(int arr[], int low, int high, int x) { // Base cases if (arr[high] <= x) // x is greater than all return high; if (arr[low] > x) // x is smaller than all return low; // Find the middle point int mid = (low + high)/2; /* low + (high - low)/2 */ /* If x is same as middle element, then return mid */ if (arr[mid] <= x && arr[mid+1] > x) return mid; /* If x is greater than arr[mid], then either arr[mid + 1] is ceiling of x or ceiling lies in arr[mid+1...high] */ if(arr[mid] < x) return findCrossOver(arr, mid+1, high, x); return findCrossOver(arr, low, mid - 1, x); } // This function prints k closest elements to x in arr[]. // n is the number of elements in arr[] void printKclosest(int arr[], int x, int k, int n) { // Find the crossover point int l = findCrossOver(arr, 0, n-1, x); int r = l+1; // Right index to search int count = 0; // To keep track of count of elements // already printed // If x is present in arr[], then reduce left index // Assumption: all elements in arr[] are distinct if (arr[l] == x) l--; // Compare elements on left and right of crossover // point to find the k closest elements while (l >= 0 && r < n && count < k) { if (x - arr[l] < arr[r] - x) System.out.print(arr[l--]+" "); else System.out.print(arr[r++]+" "); count++; } // If there are no more elements on right side, then // print left elements while (count < k && l >= 0) { System.out.print(arr[l--]+" "); count++; } // If there are no more elements on left side, then // print right elements while (count < k && r < n) { System.out.print(arr[r++]+" "); count++; } } /* Driver program to check above functions */ public static void main(String args[]) { KClosest ob = new KClosest(); int arr[] = {12, 16, 22, 30, 35, 39, 42, 45, 48, 50, 53, 55, 56 }; int n = arr.length; int x = 35, k = 4; ob.printKclosest(arr, x, 4, n); } } /* This code is contributed by Rajat Mishra */
Python3
# Function to find the cross over point # (the point before which elements are # smaller than or equal to x and after # which greater than x) def findCrossOver(arr, low, high, x) : # Base cases if (arr[high] <= x) : # x is greater than all return high if (arr[low] > x) : # x is smaller than all return low # Find the middle point mid = (low + high) // 2 # low + (high - low)// 2 # If x is same as middle element, # then return mid if (arr[mid] <= x and arr[mid + 1] > x) : return mid # If x is greater than arr[mid], then # either arr[mid + 1] is ceiling of x # or ceiling lies in arr[mid+1...high] if(arr[mid] < x) : return findCrossOver(arr, mid + 1, high, x) return findCrossOver(arr, low, mid - 1, x) # This function prints k closest elements to x # in arr[]. n is the number of elements in arr[] def printKclosest(arr, x, k, n) : # Find the crossover point l = findCrossOver(arr, 0, n - 1, x) r = l + 1 # Right index to search count = 0 # To keep track of count of # elements already printed # If x is present in arr[], then reduce # left index. Assumption: all elements # in arr[] are distinct if (arr[l] == x) : l -= 1 # Compare elements on left and right of crossover # point to find the k closest elements while (l >= 0 and r < n and count < k) : if (x - arr[l] < arr[r] - x) : print(arr[l], end = " ") l -= 1 else : print(arr[r], end = " ") r += 1 count += 1 # If there are no more elements on right # side, then print left elements while (count < k and l >= 0) : print(arr[l], end = " ") l -= 1 count += 1 # If there are no more elements on left # side, then print right elements while (count < k and r < n) : print(arr[r], end = " ") r += 1 count += 1 # Driver Code if __name__ == "__main__" : arr =[12, 16, 22, 30, 35, 39, 42, 45, 48, 50, 53, 55, 56] n = len(arr) x = 35 k = 4 printKclosest(arr, x, 4, n) # This code is contributed by Ryuga
C#
// C# program to find k closest elements to // a given value using System; class GFG { /* Function to find the cross over point (the point before which elements are smaller than or equal to x and after which greater than x)*/ static int findCrossOver(int []arr, int low, int high, int x) { // Base cases // x is greater than all if (arr[high] <= x) return high; // x is smaller than all if (arr[low] > x) return low; // Find the middle point /* low + (high - low)/2 */ int mid = (low + high)/2; /* If x is same as middle element, then return mid */ if (arr[mid] <= x && arr[mid+1] > x) return mid; /* If x is greater than arr[mid], then either arr[mid + 1] is ceiling of x or ceiling lies in arr[mid+1...high] */ if(arr[mid] < x) return findCrossOver(arr, mid+1, high, x); return findCrossOver(arr, low, mid - 1, x); } // This function prints k closest elements // to x in arr[]. n is the number of // elements in arr[] static void printKclosest(int []arr, int x, int k, int n) { // Find the crossover point int l = findCrossOver(arr, 0, n-1, x); // Right index to search int r = l + 1; // To keep track of count of elements int count = 0; // If x is present in arr[], then reduce // left index Assumption: all elements in // arr[] are distinct if (arr[l] == x) l--; // Compare elements on left and right of // crossover point to find the k closest // elements while (l >= 0 && r < n && count < k) { if (x - arr[l] < arr[r] - x) Console.Write(arr[l--]+" "); else Console.Write(arr[r++]+" "); count++; } // If there are no more elements on right // side, then print left elements while (count < k && l >= 0) { Console.Write(arr[l--]+" "); count++; } // If there are no more elements on left // side, then print right elements while (count < k && r < n) { Console.Write(arr[r++] + " "); count++; } } /* Driver program to check above functions */ public static void Main() { int []arr = {12, 16, 22, 30, 35, 39, 42, 45, 48, 50, 53, 55, 56}; int n = arr.Length; int x = 35; printKclosest(arr, x, 4, n); } } // This code is contributed by nitin mittal.
PHP
<?php // PHP Program to Find k closest // elements to a given value /* Function to find the cross over point (the point before which elements are smaller than or equal to x and after which greater than x) */ function findCrossOver($arr, $low, $high, $x) { // Base cases // x is greater than all if ($arr[$high] <= $x) return $high; // x is smaller than all if ($arr[$low] > $x) return $low; // Find the middle point /* low + (high - low)/2 */ $mid = ($low + $high)/2; /* If x is same as middle element, then return mid */ if ($arr[$mid] <= $x and $arr[$mid + 1] > $x) return $mid; /* If x is greater than arr[mid], then either arr[mid + 1] is ceiling of x or ceiling lies in arr[mid+1...high] */ if($arr[$mid] < $x) return findCrossOver($arr, $mid + 1, $high, $x); return findCrossOver($arr, $low, $mid - 1, $x); } // This function prints k // closest elements to x in arr[]. // n is the number of elements // in arr[] function printKclosest($arr, $x, $k, $n) { // Find the crossover point $l = findCrossOver($arr, 0, $n - 1, $x); // Right index to search $r = $l + 1; // To keep track of count of // elements already printed $count = 0; // If x is present in arr[], // then reduce left index // Assumption: all elements // in arr[] are distinct if ($arr[$l] == $x) $l--; // Compare elements on left // and right of crossover // point to find the k // closest elements while ($l >= 0 and $r < $n and $count < $k) { if ($x - $arr[$l] < $arr[$r] - $x) echo $arr[$l--]," "; else echo $arr[$r++]," "; $count++; } // If there are no more // elements on right side, // then print left elements while ($count < $k and $l >= 0) echo $arr[$l--]," "; $count++; // If there are no more // elements on left side, // then print right elements while ($count < $k and $r < $n) echo $arr[$r++]; $count++; } // Driver Code $arr =array(12, 16, 22, 30, 35, 39, 42, 45, 48, 50, 53, 55, 56); $n = count($arr); $x = 35; $k = 4; printKclosest($arr, $x, 4, $n); // This code is contributed by anuj_67. ?>
Javascript
<script> // JavaScript program to find k // closest elements to a given value // Function to find the cross over point // (the point before which elements are // smaller than or equal to x and after // which greater than x) function findCrossOver(arr, low, high, x) { // Base cases if (arr[high] <= x) // x is greater than all return high if (arr[low] > x) // x is smaller than all return low // Find the middle point var mid = (low + high) // 2 // low + (high - low)// 2 // If x is same as middle element, // then return mid if (arr[mid] <= x && arr[mid + 1] > x) return mid // If x is greater than arr[mid], then // either arr[mid + 1] is ceiling of x // or ceiling lies in arr[mid+1...high] if (arr[mid] < x) return findCrossOver(arr, mid + 1, high, x) return findCrossOver(arr, low, mid - 1, x) } // This function prints k closest elements to x // in arr[]. n is the number of elements in arr[] function printKclosest(arr, x, k, n) { // Find the crossover point var l = findCrossOver(arr, 0, n - 1, x) var r = l + 1 // Right index to search var count = 0 // To keep track of count of // elements already printed // If x is present in arr[], then reduce // left index. Assumption: all elements // in arr[] are distinct if (arr[l] == x) l -= 1 // Compare elements on left and right of crossover // point to find the k closest elements while (l >= 0 && r < n && count < k) { if (x - arr[l] < arr[r] - x) { document.write(arr[l] + " ") l -= 1 } else { document.write(arr[r] + " ") r += 1 } count += 1 } // If there are no more elements on right // side, then print left elements while (count < k && l >= 0) { print(arr[l]) l -= 1 count += 1 } // If there are no more elements on left // side, then print right elements while (count < k && r < n) { print(arr[r]) r += 1 count += 1 } } // Driver Code var arr = [ 12, 16, 22, 30, 35, 39, 42, 45, 48, 50, 53, 55, 56 ] var n = arr.length var x = 35 var k = 4 printKclosest(arr, x, 4, n) // This code is contributed by AnkThon </script>
39 30 42 45
La complejidad temporal de este método es O(Logn + k).
Ejercicio: Amplíe la solución optimizada para trabajar también con duplicados, es decir, para trabajar con arreglos donde los elementos no tienen que ser distintos.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA